University of Portsmouth

Computing & Mathematics Programme Area

Final year project undertaken in partial fulfilment of the requirements
for the BSc (Honours) Degree in Business Information Systems

Grid Monitoring: An Extendable and Secure Approach
by
Matthew Grove

Supervisor: Dr. Mark Baker
Project unit: PJE40
May 2003

Abstract

Projects are underway to provide distributed processing over a wide area. They

are aiming toward allowing seamless access to globally distributed resources.

In any distributed infrastructure, there is a need to monitor and manage the
resources that exist within the system. While the monitoring needs of the Grid
can be specified, the kinds of information being monitored can be diverse - from
streaming data that indicates the state of a running process, to providing meta-
data about the use of a Grid site. This information must be delivered in a, secure,

timely manor across heterogeneous systems.

The project explores the development of an extendable system, leveraging ex-
isting monitoring technologies to provide a distributed, transparent means to
monitor resources within a Grid environment. A prototype is designed and de-
veloped to both prove the validity of the monitoring architecture and overcome
the implementation issues with developing scalable, robust Grid software. Ab-
straction and encapsulation of the system components create a structured API,
while the use of dynamic code loading allows for an extendable and flexible im-

plementation.

Contents

Table of Contents

List of Figures

1 Introduction

1.1
1.2
1.3
14

1.5

The Grid and monitoring L L L
Security . . .o .. e e
Distributed
Project Managemento oL
1.4.1 Additional Project Constraints

Summary of Aims

2 Review

2.1
2.2

2.3

24

Introductiono Lo
Review of Core Technologies
Security e e e e
2.3.1 Encrypted Communications
2.3.2 Authentication and Access Control
2.3.3 Firewall Traversal oL oL
2.3.4 Heterogeneous Software L.

Wide Area Monitoring Systems oL

12
13
13
14

14

16

CONTENTS 2
2.4.1 Features desirable in an Ideal System 20
2.4.2 Summaries of Other Monitoring Systems 21
2.4.3 Comparison of Features of Existing Systems 25

2.5 SUMMATY e e e 26
3 Design and Implementation 27
3.1 Imtroduction L 27
3.1.1 [Initial Requirements 27
3.1.2 Modified Implementation Requirements 27
3.1.3 Design and Implementation Strategy 28
3.1.4 Design Components e 28
3.1.5 Design Philosophy o 0oL 30
316 DesignPlan oL 30

3.2 Abstract System Designo L Lo 33
3.2.1 Server Interface oL 33
3.2.2 Remote Communication 35
3.2.3 Server Replieso 36
3.2.4 Server Data Store Lo 37
3.2.5 Resource Monitor Interfaces L. 38
3.2.6 Summaryl e 40

3.3 Implementing Test Programs L. 42
3.3.1 The SNMP Monitor 42
3.3.2 Procmon Monitor o 0oL 45
3.3.3 An Abstract Monitoro 47
3.3.4 Servlet 49
3.3.5 Applet Client 49

3.4 Design and Implementation of Prototype 1 53

CONTENTS 3

3.4.1 Reduced Functionality Specification 53
3.4.2 Implementation 53
3.4.3 Deploying The Prototype 95
3.4.4 Prototype 1 Summary 58

3.5 Analysis of Prototype 1 and Specification for Prototype 2 60
3.5.1 Timelinesso 60
3.5.2 Security 62
3.5.3 Clients e 65

3.6 Components for Prototype 2 Lo Lo 66
3.6.1 Relational Data Store o o oL 66
3.6.2 Cache e 68
3.6.3 Web Client 69
3.6.4 Secure Sockets Layer o L. 69
3.6.5 Access Controlo 74

3.7 Implementing the Second Prototype 75
3.7.1 Change of Internal API Structure 75
3.7.2 Fully Pluggable API (Generic Plugin Manager) 76
3.7.3 Adapting the Servlets touse SSL oL 79
3.7.4 Summary of Prototype 2o oL 80

4 Evaluation 81
4.1 Evaluating the Final Prototype 81
4.1.1 Comparison of Features to Specification 81
4.1.2 Universal Data Store L. 83
4.1.3 Maximum Acceptable Latencies (Timeliness) 83
4.1.4 Automatic Node Discovery Issues 85

4.1.5 Maintainability and Extendibility 85

CONTENTS 4
4.2 Testing the Final Artefacto L. 86
4.3 Analysis of Final Architecture 87
4.4 Evaluation of Project Management 87
4.5 SUMMATY vttt e e e e e 88

5 Conclusions 91
5.1 Summary oL e 91

5.1.1 The Artefact 91
5.1.2 The System Architectureo L. 92
5.2 Meeting the Project Objectives 92
5.3 Possible Future Worko oo 92
5.4 Project Reflectionso Lo 93
5.5 Final Summary 94

Bibliography 95

Appendices 97

A Product Map Database 98
A.1 SQL Definitions for the Product Map Database 98

A.1.1 Table structure for table ‘products’ 98
A.1.2 Table Structure for Table ‘product_mappings* 98
A.2 Example Views of the Database 99
A.2.1 Data View from Table ‘products’ 99
A.2.2 Data View Table ‘product_mappings‘ 99

B Universal Data Store Database 100

B.1 SQL Definitions for the Universal Data Store Database 100

B.1.1 Table Structure for Table ‘udd_index’

CONTENTS 5
B.1.2 Table structure for table ‘udd_data‘ 100

B.2 Example Views of the Database 101
B.2.1 Data View from Table ‘udd_index‘. 101

B.2.2 Data View Table ‘udd_data® 101

C External Java Packages 103
C.1 External Java Packageso oL 103

D Source Code 104
D.1 gridclients.awt : AwtClient oo oo 104
D.2 gridclients.servlet : WeblInterface 104
D.3 gridclients.applet : AwtAppletClient 109
D.4 gridclients.cli: Cli C . o o 110
D.5 gridmonitor : MonitorServlet L o 0oL 111
D.6 org.grid.support : Debugo o oo 113
D.7 org.grid.support : StringPair o0 0oL 114
D.8 org.grid.support : IndexPairo L oo 0oL 115
D.9 org.grid.mds.rgmb : GridSecurity 115
D.10 org.grid.mds.rgmb : RgmbQuery oo oL 116
D.1lorggridmds: Mds L 122
D.12 org.grid.mds : MdsGridSecurityo 124
D.13 org.grid.mds : MdsGridDatao oo L. 127
D.14 org.grid.monitor : MonitorScano 130
D.15 org.grid.monitor.agent : AgentException 131
D.16 org.grid.monitor : Scanner Lo 131
D.17 org.grid.monitor : MonitorManager oL L. 132
D.18 org.grid.client : MonitorConnection 135

CONTENTS 6

D.19 org.grid.client.awt : AnimGraph oo 137
D.20 org.grid.client.awt : MonitorInterface 141
D.21 org.grid.client.awt : GridTree L. 144
D.22 org.grid.client.awt : Nodeo L. 150
D.23 org.grid.client.awt : Treeo 153
D.24 org.grid.client.awt : MonitorInterface notree 156
D.25 org.grid.client.ssl : PromiscuousHttpsMessage 159
D.26 org.grid.client.ssl : PromiscuousHostnameVerifier 160
D.27 org.grid.client.ssl : PromiscuousX509TrustManager 160
D.28 org.grid.plugins.modules.procmon.serialised : Mib 161
D.29 org.grid.plugins.modules.procmon.serialised : MibImpl 162
D.30 org.grid.plugins.modules.procmon : Monitor 165
D.31 org.grid.plugins.modules.snmp : Monitor 167
D.32 org.grid.plugins.modules : MonitorDef 170
D.33 org.grid.plugins.modules : DataStoreDef 172
D.34 org.grid.plugins.modules : SecurityDef 000 172
D.35 org.grid.plugins.modules.local : ProductMap 173
D.36 org.grid.plugins.modules.remote : Monitoro L. 174
D.37 org.grid.plugins.modules.remote : Security L. 175
D.38 org.grid.plugins.modules : ProductMapDef o000 177
D.39 org.grid.plugins.modules.jcifs : Security 177
D.40 org.grid.plugins : PluginDef oo 0oL 178
D.41 org.grid.plugins : PluginManager 178
D.42 org.grid.security : SecurityManager 182

D.43 procmon : ProcmonServer 186

List of Figures

1.1 A virtual view of a user interacting with a Grid 9
1.2 Physical viewofa Grido oo 11
2.1 The Globus Heart-Beat Monitoring framework 22
2.2 The Ganglia cluster monitoring system 23
2.3 'The architecture of the DSG Grid Monitor Prototype 25
2.4 Comparison of features of reviewed monitoring systems 26
3.1 The design & implementation process 32
3.2 Client gateway interaction L. 33
3.3 Gateway request processing Lo 34
3.4 An abstract monitor 40
3.5 [Imitial architecture oL 41
3.6 The Procmon design specification L. 46
3.7 The graphical tree running in a Java AWT application 50
3.8 Animated graph class running in an AWT window ol
3.9 Architecture with client code reuse highlighted 55
3.10 Automatic node discovery 56
3.11 The physical sites L 57
3.12 HTTP communication with firewall tunnelling o8

LIST OF FIGURES 8

3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

4.1

4.2

Possible latencies within the system 59
Running applet client L 59
Example cache objects and their relations 67
Revised architecture with new cache layer 71
Web client monitoring node 192.160.0.32 in site UniLan 72
Certificate checks and browser dialogue boxes 73
Fully pluggable API with plugin mananger 76
Screen shot of plugin directory structure showing the plugin classes for the

‘remote’ implementation type L oL 78
Servlet request handling decision tree L. 89

Final acrhitecture 90

Chapter 1

Introduction

1.1 The Grid and monitoring

A Grid consists of a federation of networked resources typically found in virtual groups. The
Grid can provide a gateway to submit computational jobs and other work, which will be run
on resources allocated by remote or local schedulers. It can be thought about as giving users
access to a global virtual computer. This makes better use of the computer-based resources,
which may stand idle and under utilized, and allows sharing of powerful resources (such as

super computing platforms). A virtual view of one user interacting with a Grid is shown in

| — < ®
e
User

One use for a Grid: A user submits work and the erid
system will complete the task and returns the results.

Figure 1.1.

Figure 1.1: A virtual view of a user interacting with a Grid

The Grid itself needs a mechanism for monitoring. By monitoring we mean:

e A way of gathering data about the state of the Grid

e Processing this data

CHAPTER 1. INTRODUCTION 10

e Delivering it to agents and clients, which can make use this information.

In order to gather this information, we first need to decide what data is needed and for what

it is used.

The Grid is basically made up of:

A series of nodes which are capable of doing work,

Agents which control the nodes,

End users who want to make use of the resources,

Networks which provide the infrastructure that link the resources together.

These components are shown as part of a physical view of Grid infrastructure in Figure 1.2.

Potentially each of these components, which can be divided into infrastructure, users and
resources can generate data and each could require it: they are both producers and consumers
of Grid information. The two key consumers are the control agents and the end users. The
agents require information to be able to make decisions when controlling the Grid, end
users might be interested in monitoring a resource running one of their jobs (perhaps in real
time). There is a need to provide the information in context; for example, if information is
required in a given time frame and the system delivers it late, it is of no use to the agent.
Another aspect to look at is the need for historical data; an agent may require information
on a previous state of the Grid. The project focus is on the initial monitoring of the data,
however it is expected that the architecture would support a client capable of recording

monitoring data for future use. Examples of this information:

Jobs currently running on a node,

The capabilities of a resource (for example, CPU speed, memory, disk),

A queue of tasks held by an agent,
e The number of resources being controlled by an agent.
The information that can be collected is quite diverse. Some can be considered static (for

example, the name of a node), while some has the potential to change rapidly (for exam-

ple, CPU usage). The initial stage of the monitoring process is discovering what data is

CHAPTER 1. INTRODUCTION 11

Clients / agents consuming and monitoring Grid resources

il

&r

Job Submission Gateway Historical Data Store Job Schedular
\

Graphical Client

Internet
(Global Network)

Linux
Windows

Grid Sites (containing collections of resources)
connected to the Grid via gateway machines

Resources Network Printer

Figure 1.2: Physical view of a Grid

available and then how it can be monitored. This is non-trivial, the problem lies within the
heterogeneous nature of the Grid. It is a heterogeneous mix of different architectures and
operating systems; there is no standard, which means at the moment each site is choosing a
monitoring method to meet its needs. This is a problem for non-local users of a site, as they
will probably not have the tools required, or the knowledge needed to find and monitor the
information they require.

The Grid concept is to provide a virtual computing platform. The Grid should not be tied
to one platform, as there is no one operating system or architecture that meets all needs.
We are left with the problem of monitoring systems which all provide different data over
different interfaces. Abstracting the monitoring to provide standardisation at another level
beyond the initial gathering of the data is required. Solving this problem will be a major

part of the project. Ways that others have tried to implement heterogeneous monitoring

CHAPTER 1. INTRODUCTION 12

along with descriptions of monitoring techniques will be included in the literature review of

the project.

1.2 Security

Inter-site communication within the Grid is typically over the Internet - it provides the dis-
tributed network, which allows physically separate networks to act as one virtual Grid. The
distributed resources within the Grid must be protected. Within the context of monitoring
- access to the information being monitored must be controlled. Some of the information is
likely to be of use to potential hackers or people wanting to gain access to a site on the Grid.
A distributed platform of this size is an interesting intellectual target as well as a powerful

resource to abuse.

In many cases, Grid sites are protected by firewalls. This provides a gateway into the
site and may hide the nodes from the wider Internet. Network administrators are typically
implementing egress (out going) filters on their firewalls, which limit the ports their users can
use. This can present a problem to system designers attempting to allow access to servers,
which are not using standard protocols and ports. Traversing the firewalls is a problem,
which will have to be addressed by this project, as end users and Grid sites will need to have

information passed between them. There are common techniques for doing this.

The mechanism by which the monitoring system distributes the information should be secure.
Data sent as plain text can be passively read by any part of the Internet it is routed through.
In recent years the standardisation of various encryption techniques, for example public
private key [1], hashes, and certificates, means that it is possible to use standard protocols
such as SSL (Secure Socket Layer) [2] to encrypt data using industry tested algorithms (i.e.
X.509 certificates [3]).

Access control is another requirement of a secure system. An administrator will want to
restrict access to the resources within the site they control. There needs to be a way to have
the identification of the users roam across the Grid. If a user enters the Grid monitoring
system through a gateway, they can authenticate who they are to that gateway. If they then
want to monitor a resource at another site, the gateway must pass the identification of the
user along with the request for information to allow the second site to check whether the
user has the permissions to monitor the resource. The home gateway agent does not know
about these remote permissions, it can only authenticate its own users. This is a distributed
model, which is compatible with the way users have traditionally been granted access to

resources.

CHAPTER 1. INTRODUCTION 13

1.3 Distributed

The Grid by definition is spread across worldwide, networked infrastructures. An ideal
distributed system has no single point of failure and parts of the system should be able to
fail without breaking the rest. The classic example is the Internet itself, the failure of a
node or even large parts of the network do not bring the entire system down. There are
some standard problems with designing distributed systems, avoiding single points of failure
creates problems when the system needs to discover entities.

Without hard wired entry points (which an ideal distributed system does not have) it can be
complicated for parts of the system to join in when they are started. For instance, if a site is
created with Grid monitoring software and there is a wish for it join in the Grid monitoring
infrastructure it needs to know how to register its presence so that it can be found. There
are ways to solve this, the simplest to implement are centralised controllers, like the root
DNS servers of the Internet [4]. They of course represent a single point of failure. There
are totally distributed discovery methods such as multi-casting and peer-to-peer look up

services.

While the aim of the project is to produce, a distributed monitoring infrastructure, the focus
is not necessarily to be completely distributed. A compromise should be reached between
the distributed nature and the rest of the features required. The aim is not to invent a
new distributed model, but to implement a system using a combination of techniques where
applicable to strike a balance between functionality and a distributed nature. This is likely
to mean no centralised data but some interaction (or hard wiring) for new sites to initially
join in the network. This way does not represent a single point of failure and does not
require overly complicated services to do initial lookups (a very small part of the systems
functionality). Methods to implement this will be looked at in detail.

1.4 Project Management

Six months are scheduled for the writing of the project. The tasks are broken down in Table
1.1.

These tasks define milestones, which will prevent the project from getting behind schedule.
It is the intention to invest large amounts of time and effort to keep the project flowing.
The previous experience of the author allows for assumptions to be made about the length

of each task, how ever un foreseen problems may create extra work during the development

CHAPTER 1. INTRODUCTION

14

Month Task

November | Read lots more about R-GMA and the Grid, set up SNMP and Tomcat,
write code snippets that can talk to both.

December | Design and implement the abstract layer - probably implementing
another very simple monitoring protocol to demonstrate that the
monitoring can be extended.

January Continue work on artefact - make sure all major implementation
hurdles have been sorted and prepare for a demo.

February | Finish demo and present it. Start collating work for write up.

March Have a virtually finished artefact and be well into write up
since this is the hard part.

April Review my implementation as part of the write up...

May Finish write up.

Table 1.1: Project tasks broken down by month

stages of the project, this is why a large amount of time has been allocated for implementing

the prototype.

1.4.1 Additional Project Constraints

In addition to the time management issues there are further constraints placed on the project:

e Man power - There is only one developer working on the project.

e Development platform - There are a finite amount of computing resources avaiable to

develop and test the artefact on.

e Money - There is no budget, the entire project must be developed for no monetary cost.

The authors use of Free Software operating systems and Open Source development tools

negates this restriction somewhat.

1.5 Summary of Aims

The extended definition of what the system should do / have:

e An abstract monitoring layer capable of monitoring via multiple protocols,

CHAPTER 1. INTRODUCTION

15

e Heterogeneous execution and run on most Grid hardware,
e Site deployment comparable to traditional Grid structure,
e A distributed security model:

— Encrypted communications,

— Firewall traversal.

e No single point of failure.

The report must use the prototype to verify the validity of any designed architecture.

Chapter 2

Review

2.1 Introduction

The aim of the project is to produce an abstract framework, which allows distributed and
secure monitoring of Grid resources. The proposed system falls into the category of middle-
ware which means it is a software framework tying together other software [5]. This project
aims to leverage existing work on Grid infrastructure and software tools in an effort to

combine the best ideas and solutions to construct the best possible framework for monitoring.

2.2 Review of Core Technologies

In order design the artefact, existing technologies must be reviewed and assessed. Other
implementations, which parallel some of the goals of the system, will be evaluated. The need
for monitoring resources has been around longer than the concept of the Grid. Monitoring
of local resources is a mature area of study. Generic and standard components, such as the

use of the Internet for wide-area communication will not be discussed.

2.3 Security

The system must provide a mechanism to be protected from abuse. Misuse of communica-

tions networks and computers is widespread.

Joel M.Chrichlow, in his book, The Essence of Distributed Systems [6] explains that the

16

CHAPTER 2. REVIEW 17

requirements of security and privacy within resource management address the procedures
that are established to prevent unauthorized access to the resources. He observes that
security is normally found on the outskirts of a system acting as a barrier and that the
protection that it provides can be greatly reduced or negated by design and implementation
faults with the basic system that it is trying to protect.

2.3.1 Encrypted Communications

Data passing through a medium beyond the physical control of an organisation can be
passively intercepted (read without changing the data). It can also have the payload changed,
which is an example of an active attack. This can be prevented by the use of cryptographic
tools. Encrypting communications using standard industry tools, such as DES [7] or PKI
[1], does not prevent the interception of data but stops it from being altered on route and

stops a third party from understanding the payload.

2.3.2 Authentication and Access Control

Authentication provides a mechanism to establish a trust relationship between two parties.
Once the authenticity of a party is established access control rights can restrict their use of the
system, this is known as authorisation. The combination of authentication with encryption
provides a secure way to transport data. Apart from providing security, authentication
provides a way to track the use of the system; one of the uses of this could be if use of
the system was charged for on a usage basis [8], the authentication would allow work to
be associated with a user for billing. The security infrastructure used by this project is

dependant on design and implementation decisions, which will be made later.

2.3.3 Firewall Traversal

A firewall [8], is a filter usually placed at the periphery of an organisations network to control
incoming and outgoing traffic. There are two categories of firewall, ones where filters exclude
data packets based on rules, and the other that provide application proxies which handle

external communications on behalf of the internal network.

Organisations often provide a misguided approach to the use of firewalls using them as a
magic bullet for Internet security [9]. Internal security (the security of the implementations

of internal systems) is as important as it is possible to bypass a firewall under curtain

CHAPTER 2. REVIEW 18

circumstances. The widespread use of packet filtering firewalls and application proxies has
created a serious problem for distributed systems, which are trying to communicate with

each other through these firewall boundaries.

A common method of firewall traversal is encapsulation of data using a standard protocol.
An often-used one is HT'TP and port 80. HTTP is chosen as most organisations allow access
to the Web, the data must be encapsulated as it may be routed through application proxies

(in this case web proxies).

2.3.4 Heterogeneous Software

Producing a heterogeneous system for the Gird requires that it run on all UNIX clone
operating systems as most of the Grid infrastructure is being developed on these. Apart from
different operating systems, there will be different hardware to consider. The deployment
platform coupled with the required distributed communications dictate the requirements for

heterogeneity:

e Programs must be either interpreted from machine-independent code or recompiled for
each architecture,

e Communications must use a non-architecture specific data format [8].

There are several technologies and programming languages, which can be used to create a
portable system. Three of the markets leading competitors are reviewed with the needs of

producing a distributed Grid application in mind.

Java

Java can be compiled to machine-independent byte code, which is interpreted by a virtual
machine at runtime. It provides a garbage collector which reclaims used memory when it
is safe to do so [10], this removes a major source of errors in modern programs. The Java
Virtual Machine, which interprets the byte code, provides a layered security model to protect
the underlying system from either malicious or poorly written code. Runtime type checking

means that dynamic loading of objects can be used (relatively) safely [10].

Sun Microsystems provide a subset of Java for producing distributed applications using
HTTP for communication, the reference implementation of this technology is The Tomcat
Servlet Engine [11].

CHAPTER 2. REVIEW 19

Interpreted Byte Code | Cross platform | HI'TP server framework
Java Yes Yes Yes
C++ No Maybe Add on
Net (C#) | Yes Some Yes

Table 2.1: Programming language requirements

C++

C++ compiles to machine specific binaries. GNU [12] tools such as automake and autconf
[13] can make the recompilation of code automatic. Not all C++ can be ported using the
GNU tools, there are programming pitfalls which make the code un-portable [13].

There are distributed programming frameworks available for C++ such as CORBA [14].
C++ allows flexibility and speed; these benefits would have to be compromised with writing

portable code.

NET

NET [15] allows any of the procedural languages provided by Microsoft (C# [16] is the main
NET language and is similar to Java and C++) to be compiled to machine-independent
byte code. Microsoft calls this the IL Common Language Runtime [17]]. This would make
it as portable as Java, however there is only an interpreter for Microsoft Windows and BSD.

The Microsoft .Net framework includes support for Web Services - a system for creating

distributed applications using HTTP for communication.

Summary

Table 2.1 shows that Java is the most suitable language given the development requirements

of the project.

2.4 Wide Area Monitoring Systems

This section includes a review of the existing monitoring system, which have similar func-
tionality to the proposed system. The differences will be highlighted and the reasons why

no existing system solves the Grid monitoring problem will be explained. Some existing

CHAPTER 2. REVIEW 20

monitors which were not designed with the Grid in mind are included when they have the

desired functionality.

2.4.1 Features desirable in an Ideal System

e Software implementation features:

— Open Source License: Allows the extending of the software without restriction
as explained in Section 3 (Derived works) of the Open Source Software Definition
[18].

— Portable (homogenous system): Allow the system to run on the mixture of

operating systems which the Grid is made up of.

— Robustness: A stable design and implementation.
e Communications features:

— IP based communications: Remote communications will take place over the
Internet.

— Multi user system: Should allow for concurrent use of the system by multiple

users.

— Distributed architecture: Monitoring architecture must follow the distributed
architecture of the Grid.

— Web based monitoring interface: Web browsers offer a standardised, user

centric access to information.
e Security features:
— Encrypted Communications: All data traversing the Internet is susceptible

to attack or interception unless it is protected.

— Access control restrictions: Access to the system must be controlled.
e Monitoring features:
— Multiple monitor protocols: More functional system will make use of all avail-

able monitor protocols on a resource rather than relying on one.

— Discovery of resource information: Administration time is reduced if system

can automatically discover what values can be monitored on a resource.

— Real time monitoring: This project is interested in the timely gathering of

monitor data.

CHAPTER 2. REVIEW 21

2.4.2 Summaries of Other Monitoring Systems
Globus Heart-Beat Monitor

The Globus heart-beat monitor is designed to monitor the state. It was produced by the
Globus Project which is creating software to provide infrastructure for monitoring compu-
tation grids [19]. One of the interesting parts of the Globus project is an implementation
of the GSI (Grid Security Infrastructure) [20] which provides common access control and
security for Grid infrastructure. Back-end security for a grid application such as this project
may be provided by a frame work like the GSI (in a deployed system).

The Globus HBM Specification provides an overview of the functionality of the system [21].

The HBM is made up of a series of components:

e HBM Client Library (HBMCL),
e HBM Local Monitor (HBMLM), and

e HBM Data Collector (HBMDC).

The monitor is run on every host, with a central repository per site (the data collector) for
recording monitored data. The monitor was designed to work independently of the rest of
the Globus toolkit (a complex system). The architecture is outlined in Figure 2.1 (See the

list above for acronyms).

Netlogger

Netlogger is a monitoring system written for gathering real-time data about distributed
systems for analysis [22]. The NetLogger system provides a framework for precision reporting
of events (logging). It can be used to report monitor events or behaviour of a distributed
application. There have been tools written for the system to monitor host and network
performance. It is distributed with a set of programs to help developers work with the

system [23]:
e NetLogger message format (ULM) : A simple, common message format for all moni-
toring events which includes high-precision timestamps.

e NetLogger client API library : C, C++4, Java, Perl, Python, and TCL calls that you

add to your existing source code to generate monitoring events.

CHAPTER 2. REVIEW 22

Courtesy of the Globus project.

Reports to HEMDCs

Figure 2.1: The Globus Heart-Beat Monitoring framework

e NetLogger visualization tool (nlv) : a powerful, customizable X-Windows tool or view-

ing and analysis of event logs based on time correlated and/or object correlated events.

e NetLogger host/network monitoring tools : a collection of instrumented system moni-

toring tools.
e NetLogger storage and retrieval tools :

— netlogd: a daemon that collects NetLogger events from several places at a single,

central host.

— netarchd :An event archive system for NetLogger data, based on mySQL

This comprehensive set of utilities makes NetLogger extendable for a programmer. The net-
logd program is based on some Python libraries which pass information around the network
in plain text, there is work to add security to the system in the form of Globus GSI.

CHAPTER 2. REVIEW 23

Ganglia

Ganglia is a tool which grew out a project run at Berkeley called the UC Berkeley Mil-
lennium Project, which aims to develop and deploy clusters of cluster across the university
infrastructure [24] (this could be called a Grid).

Ganglia now uses (it has undergone many revisions) a peer-to-peer system for transferring
information using XML and XDR. The system uses multicasting to discover other nodes,
which will not work over most of the existing infrastructure [25], the system is shown in

Figure 2.2.

Ganofla

Courtesy of Matte Massie - University oOf
California, Berkeley Computer Science

H Gmpna Grmbnd
Oinend Gmond
] Cluster A Multicast Cluster B Multicast, |
' Channel (XDR) Channel (XDR) !i
Gmond Gmond

Gmetad/
Web Server

Figure 2.2: The Ganglia cluster monitoring system

Ganglia user an authorisation daemon with RSA certificates to restrict access to the system,

how ever the XML data is passed as plain text around the network [25].

Relational Grid Monitoring Architecture (R-GMA)

R-GMA [26] (part of the DataGrid project [27]) aims to provide infrastructure for transport-
ing information about the state of the Grid. It does not perform any monitoring of resources

itself. R-GMA provides communication between Grid sites.

CHAPTER 2. REVIEW 24

The R-GMA concept is sound - produce middleware for other Grid systems to use for inter-
site communication. Its use in this project was evaluated and the following problems were

found:

e Broken installation method: R-GMA relies on the RPM package format [28] using
non standard paths for files which currently only installs on Linux distributions with
non standard file system layouts. It is possible to install the software on any Linux
machine but the install process must be performed manually. Hopefully the developers
will move to a heterogeneous package format using a portable installation process such
as the Ant installer [29].

e Monolithic design: The package is overcomplicated by API support frameworks for
multiple languages. For instance it is hard to pick out the Java only parts of the

system.

e Overcomplicated interface: Writing R-GMA code is simple - the API is well defined
but if the system does not work (broken installation) it is very hard to track down the

problems.

It is the opinion of the author that R-GMA is useable for a developer of the R-GMA code
itself but it is not ready for systems to be developed on top of the framework. Time restraints
on this project prevented a more thorough investigation, R-GMA may have worked with a
lot of developer effort but it was deemed too great a risk to the goal of producing working

software.

DSG Grid Monitoring Prototype

The Distributed Systems Group [30] at Portsmouth University have produced a prototype
grid monitor. It uses part of the Globus toolkit to access Grid Meta Data Servers (MDS),
which contain resource data about the Grid. The prototype provides a web interface to the
MDS machines and can be used to display resource information graphically, the architecture

is outlined in Figure 2.3.

The prototype demonstrates an interface to Grid monitoring information. If this prototype

were installed at each Grid site it would provide a distributed framework for access the data.

CHAPTER 2. REVIEW 25

Courtesy of the DSG, University of Portsmouth

Central e-Science

{Remabko from Serviat) Database
Reqgistered Sites

1
Grid Site
Registration
Data

e-Sciance Support
Centre

Figure 2.3: The architecture of the DSG Grid Monitor Prototype

2.4.3 Comparison of Features of Existing Systems

Figure 2.4 shows a comparison of the features of the reviewed systems. It highlights the

differences and the strengths of each package.

CHAPTER 2. REVIEW 26

[+
o
&
i
o
o
‘§
5
1. 2
T @ =
ol B E| «| &
al 8| T = g
o o s 9| &
& = | 0
Software implementation
Open Source License Yes |Yes |Yes |Yes|Yes
Portable (homogenous system) Semi |semi [Semi |[Yes |Yes
Communications
IP based Yes |[Yes |Yes |[Yes|Yes
Multi user system Yes |Yes |Yes |Yes|Yes
Distributed architecture Yes |Yes |Yes |Yes|Yes
Web based monitoring interface Yes Mo |Yes Mo |Yes
Security
Encrypted Communications Mo o Mo Yes [N
Access control restrictions Mo Mo o |Yes |Yes Mo
Monitoring
Multiple monitor protocols Mo |Yes [MNo [MNA |MNo
Discovery of resource information Mo Moo [Yes |[MNA |Mo

Figure 2.4: Comparison of features of reviewed monitoring systems

2.5 Summary

None of the reviewed frameworks provide all of the features required for a secure distributed
Grid monitoring system. During the review process the developer read discussions on each
specific implementation, which helps give a better understanding of the issues with developing

a monitoring framework.

Chapter 3

Design and Implementation

3.1 Introduction

In an effort to simplify the design and implementation process, a rolling prototype method-
ology will be adopted. Before this is discussed, the requirements of the system need to be

analysed.

3.1.1 Initial Requirements

e Be able to work through firewalls,
e Only need one node per site accessible to the Internet (a site gateway),
e Security,

— Provide authentication to restrict access,

— Use encryption for communication over the Internet.

3.1.2 Modified Implementation Requirements

There are further restrictions that the implementation of the system will add to the ini-
tial requirements, as the system is reasonably complicated to implement, the developer was
unfamiliar with the overall area and how best to design the system to work correctly and effi-

ciently. The developer was however familiar with some of the ideas needed to implement the

27

CHAPTER 3. DESIGN AND IMPLEMENTATION 28

final artefact, but many aspects of the system were bound to fall down at the implementation

stage, but then they could be modified based on experience.

An example of a Hidden System Requirement

A typical client for the system is a Java applet. This is an obvious way to access the system
in a heterogeneous way. Java security uses the sand box approach, where the applet can only
communicate with the server where it was downloaded. This means that if a user wants to
monitor a node, which is part of a different site, once they have downloaded the applet all
communication must be from the applet to the serving site, even though the client knows
that the data it wants is not at that site.

A workaround for this problem is to have the site gateways forward all requests, which are
not for them, on to the remote site transparently. This feature must be introduced as a

requirement of the system.

In order to prevent the requirements of the system from changing late in the implementation
stages of the project, the developer can attempt to find any potential problems and solve
them as early as possible during the development stage, this dictates the way artefact is
designed and implemented.

3.1.3 Design and Implementation Strategy

In order to reduce the effect of changing requirements introduced because of problems with
the implementation an iterative approach can be used. Self-contained modules can be created
to solve any problems envisiged by the developer when implementing aspects of the artefact.
These modules can be developed in isolation. The stand-alone components can be integrated
into the overall system one at a time after separate testing. This methodology is discussed
in more detail later, and shown in Figure 3.1.

3.1.4 Design Components

It is important to have a good architectural view of the system at each stage of the design
and implementation process. It is expected that fine-grained design decisions will be made
as problems become apparent during development of the system. A list of coarse-grain areas

that need to be considered is below.

CHAPTER 3. DESIGN AND IMPLEMENTATION 29

Communication

As described in the Chapter 2, the most common way to traverse a firewall is to tunnel all
traffic over HT'TP. Java provides a tested platform to do this by way of Java servlets. A
simple client/server paradigm will be sufficient. In this case, a site gateway servlet may be
acting as a server if information is being requested of it and as a client when it passes any
information on to other sites (routing). The end user will also be using a client to access
a site gateway. It should be possible to use common code to do this, so that any client

implemented can use the same components to access a servlet.

This HTTP communication will have to be encrypted to meet the system requirements.
HTTP supports SSL [2] - so using it gives us the benefit of standardised built-in encryption
support.

Monitoring

The task of this artefact is to monitor the resources at a site. The original specification
dictates that this must be extendable. What this means is that it must be as easy to add
new protocols to the system or add further functionality. A desirable feature is the use of
multiple monitor agents to combine information - in other words if a machine is running two
different types of monitoring agents it would be good if the system could fuse the data and

provide an abstract monitor of the overall system.

An interesting issue is how to make it easy to add new monitoring agents to the system and
how to provide a common view of a resource when different kinds of monitors, possibly with

different data formats, are being used.

Authentication

As outlined in Chapter 2, there is a need to encrypt communications, which travel across the
Internet in order to protect the system from abuse. There is also a need to restrict access to
the system - a distributed way to provide authentication needs to be implemented. A user
may want to access data on a remote site - the administrator of the remote site will not have
the login credentials for this user so the system must be able to do a remote authentication
whereby it contacts the users home site. This means that the system must be able to derive
the users home site from their logon credentials. It is expected that a production version
of the system would use common Grid authentication systems such as GSI for the back-end

authentication process.

CHAPTER 3. DESIGN AND IMPLEMENTATION 30

Clients

Although the goal of the project is the development of a framework, it is implausible to
develop and test the system without some kind of user interface. Part of the project will
involve an example interface to demonstrate the systems usage. It can be developed in

parallel with the main parts of the project.

3.1.5 Design Philosophy

There are three key and overriding design goals for this system:

e Distributed - wherever possible this system should be built using distributed system
design goals. The aim here is produce an artefact that is scalable with no points of
failure. There are some areas, which cannot be addressed within the time constraints
of this project. A key one being resource discovery without hardwiring, this is outside
the scope of the project. Even though this aspect is left out, it must still be considered,
for instance by leaving code stubs where this could added to the system later.

e Stateless - although this is a distributed system design issue it should be highlighted.
A stateless system will always fall back to its starting state even after a catastrophic
failure. When using the Internet as the communication medium, matters such as
network latency and quality of service are often beyond the systems control. There is
trade off that occurs for the increase in work that must be undertaken for every action.
In real terms, this will affect the speed of the system, but will promote robustness.
It is important that the system can produce timely responses to queries, hopefully

mechanisms such as caching should make this possible.

e Abstract middle-ware design - the goal is to produce an abstract system, which demon-
strates the ideas behind the project. It is hard for the developer to just create the
framework, which is why components are being produced to work with the abstract
architecture (a front end and monitor clients). The point is however, to produce a

working prototype that demonstrates that the chosen architecture is viable.

3.1.6 Design Plan

After discussing the breakdown of the requirements, it is possible to suggest a plan to follow
for developing and implementing the system. This plan needs to be followed to produce both

CHAPTER 3. DESIGN AND IMPLEMENTATION 31

a prototype of the system and a final design specification for an abstract grid monitoring
achitecture. The overall goal of the project is produce this specification; the process of

producing the prototype will support this final model.

Design and Implementation Stages

The specifics of each of these stages will be dependent on the output of the previous one.

1. The production of an abstract system design template that describes the architecture
of the system. This is a high-level design, it should produce a specification, which will
highlight areas, which may cause problems during implementation and may change the

overall design.

2. The implementation of small modules to test ideas and produce working components
to build the system with.

3. The construction of a first prototype. This does not need to fulfil all of the require-
ments, but should demonstrate the overall design goals and provide evidence that the

design is sound and possible to implement.

4. The evaluation of first prototype, by referring back to the specification outlined in
stage 1. The concept is to focus on interesting problems within the implementation,
by this stage the system should be more fully understood. It is likely that a much
better (or more functional) implementation can be designed at this point. The overall

specification may change.

5. Another round of small separate modules will be developed to explore any further

issues that need addressing within the implementation of the first prototype.

6. The merger of the new modules with the original prototype. It is possible that this will
be a fundamental enough change to the system structure to be essentially a redesign
rather than an upgrade - the object-oriented nature of Java should ensure that code
can be ported without having to duplicate work. This stage will produce a second and
more viable prototype.

Figure 3.1 gives an overview of the design and implementation process.

After completion of the second prototype it should be possible to produce a detailed specifica-
tion for the final Abstract Grid Monitor. The issues investigated during the implementation

of the first prototype and the stand-alone components will support this.

CHAPTER 3. DESIGN AND IMPLEMENTATION

32

Analysis

Design

Component

Component

Component

Component

Y

Prototype 1

Component

Component

Component

Component

Implementation

Integration

Analysis

Design

Implementation

LR L3 X b 2 X B 4 28 4 2B 4 L 43 0 & 4 ¢ 3 4 2 3 22 3315842528425 4 1] .-v--..-..-..-..--. ->m

Prototype 2

Integration

Figure 3.1: The design & implementation process

CHAPTER 3. DESIGN AND IMPLEMENTATION 33

3.2 Abstract System Design

This is the design of the architecture that the artefact will use.

3.2.1 Server Interface

The artefact uses a client/server paradigm. Where a user (client) queries a site gateway
(server) for information. The gateway transparently processes this request and returns the

information to the client. This interaction in shown in Figure 3.2.

Client Machine

Internet

A

Site Gateway

Resource Resource Resource

Figure 3.2: Client gateway interaction

Server Interface Requirements

It is possible at this stage to define what information the site gateways will have to be able

to serve.

If a query for information cannot be satisfied by the gateway because it involves remote data,
the gateway must pass it on to the site that can handle the request and transparently return

the results to the client, this is shown in Figure 3.3.

CHAPTER 3. DESIGN AND IMPLEMENTATION 34

Request from
client

Client

A

Return value to
client

Servlet Request
Processor

Request is for
local node

Y

Monitor data

Request is for
remote node

Pass request to
remote site

Site gateway the client is connected to

3

Servlet Request
Processor

Request is for
local node

.| Return value to
"| client via gateway

Monitor data

Other site gateway

Figure 3.3: Gateway request processing

A list of replies and queries, which gateways may process:

e A list of sites - every site needs a unique name to identify it and a URL to the site
gateway so it can be accessed. The issue of naming and discovery is interesting but is
not the focus of the project. It is sufficient to "hardwire’ this data into each site by
providing a list of site URLs and names for each gateway. This means there is a need
for a general data store for each site gateway to hold this information - and probably
other things.

e A list of nodes given a site name - a gateway needs to maintain a list of the nodes at
it’s site which can be monitored. There needs to be some kind of discovery mechanism
for creating this list. It may be possible to produce auto discovery code which can find
nodes at the site and record that they can be monitored. If this is not possible this
information could be hardwired into a data store.

e A list of products given a node name and a site name - this means returning a list of
all of the things that can be monitored on a node. The code that handles monitoring
of a node, must be able to translate the monitor specific names for objects that can

CHAPTER 3. DESIGN AND IMPLEMENTATION 35

be monitored, into a standardised list. There is a need to have a standard naming
convention for resources (such as CPU usage) because each node may be monitored

using a different protocol, which may have a different internal naming convention.

e The value of a monitored object given its name, a node name and a site name - this is

the actual monitoring of something on a node such as CPU usage.

Server Interface Definition

From this we can create a list of services which the server part of the site gateways must
provide clients. This is a definition of the interface that compatible clients will use and that

all compatible servers must implement.

CetSiteList();

Cet NodelLi st (Si t eNane) ;

Get Product Li st (Si t eNane, NodeNane) ;

Get Pr oduct Val ue(Si t eNanme, NodeNane, Pr oduct Name) ;

This is the layer of abstraction that a client will interact with. Since a gateway passing on
a request to a remote site is acting as a client this doubles as the inter-site communication
definition. As long as this definition does not change any client and server which implement

it will be able to communicate regardless of the internal workings of the program.

This abstract layer will make implementing the system much easier for the developer. During
the implementation stages it is likely that there will multiple development sites running
different versions of the code. If the communication interface remains the same the fact that

they are using different code will not stop sites from participating in the system.

Removing the need to resynchronise every site after each code change, should speed up the
development by reducing the amount of time distributing and checking code versions.

3.2.2 Remote Communication

This system is using a simple client server implementation for communication. In order to
make use of the standard firewall traversal solution all client server communication will be
via HT'TP. HTTP is a stateless protocol and this supports the stateless design ethos which

is being followed.

CHAPTER 3. DESIGN AND IMPLEMENTATION 36

The Java servlet engine Tomcat provides a platform to deploy servers which can be interfaced
with via HT'TP. The mechanics of the HTTP communication is provided by Tomcat. The
implementation of a server and a client which can use HT'TP for communication will be one
of the programs written in the second stage of the design and implementation. It is important
to have this code working early on during the project development as it is required for any

remote communication.

3.2.3 Server Replies

There must also be a specification for what data the server will reply to the requests with

and what format it sends replies in.

Server Reply Definition

Each of the methods outlined in the server interface definition will return data to a client
which calls it. This needs to be standardised before clients are written as it will break

compatibility between servers and clients if it is changed later.

CetSiteList();
Returns a |ist of site nanes.
Get NodelLi st (Si t eNane) ;
Returns a |ist of IP addresses of nodes within a site.
Cet Product Li st (Si t eNanme, NodeNane) ;
Returns a list of products aviable on a node.
Get Pr oduct Val ue(Si t eName, NodeNane, Pr oduct Name) ;
Returns the value of a product froma node.

In each case the data returned by a method is of the same type, for example every item
returned by GetSiteList() is a site name - it does not mix any other types of data. This
means it is possible to have very simple replies to these methods. They can be a simple text
list of items separated by a new line. If a method returned mixed data it would be required

to also return an identifier for each item (this would likely be done using XML).

Relating to HTTP

A client will request a specially formatted URL, which the server can map to each of the

four methods it must provide. The server will perform the required work and then return

CHAPTER 3. DESIGN AND IMPLEMENTATION 37

the data. Since the client knows what it just requested it will know what data type it is
receiving. This is very similar to a normal web server which has a page requested using a

URL, which it then maps to a file, opens it and sends it back to the web browser.

For a client to invoke one of these methods on the server it must construct the correct URL,
which will be mapped by the server to the method. It then sends this to the server using
HTTP. The server replies with zero or more text items all of the same data type.

3.2.4 Server Data Store

It is indented that the artefact will use data caching to increase the responsiveness of the
system - this cache will need to be stored somewhere. There are also settings such as the
site name and the URLs of other site gateways, which the server will need to store locally.

There is a need for some kind of local data store.

JDBC Interface to Database Back End

The Java language has an abstract interface to databases called JDBC [31], which allows
programs to access many different kinds of databases using SQL. Since there may be a need
to store a large amount of data in the form of the cache, a relational database is a good choice
as a back end data store. JDBC means that the specific implementation of the database is
not relevant as long as JDBC supports it (examples MySQL [32], Microsoft SQL [33], Oracle
[34], and PostgreSQL [35]).

Solving the Changing Data Requirements

One of the problems of using this rolling prototype design methodology is that the require-
ments of this data store are very likely to change over time. With traditional database design

the requirements dictate how the database is designed.

An interesting way to solve this problem is to create a system which abstracts the interface
to the database. This idea of abstraction follows the design philosophy of the project. This
can be extended to create an interface which standardises access to data, which does not

require a strict database structure.

This can be broken into two parts:

1. When writing code, which must access the data store never access the database directly

CHAPTER 3. DESIGN AND IMPLEMENTATION 38

- do it through an abstract interface. This means that if the database changes, only

the data store interface code is affected.

2. Change the physical layout of the database to allow any relational information to be
stored. This means that it is not necessary to create new tables and new definitions

when there is a need to store some new kind of data.

This second part is an interesting solution but also time consuming for the developer. The
data store is not the main focus of the project so during early development the database will
be designed in a traditional way. The abstract interface outlined will allow the back end to

be switched to the new kind of data store when and if there is time to implement it.

3.2.5 Resource Monitor Interfaces

To demonstrate the monitoring framework the well-documented SNMP [36] (Simple Network
Management Protocol) monitoring daemon will be used. Since the project is to produce
middleware the important thing is to choose an example back-end monitor which will be

easy for the developer to work with.

The aim of the system is to monitor the state of resources and allow access to that informa-
tion. As discussed there are many different monitoring tools, which are mainly incompatible.
These tools use different internal naming schemes to describe the data they monitor and pro-

vide different ways to access this information.

If the system is to be able to use different types of monitors there is a need to translate the
monitor descriptions of the data into some common format. When there is a standard for
naming the resources, the type of monitor which is providing the data becomes hidden from

the program.

This abstraction would make it easier to change the specific monitor code and to add new

monitors without having to rewrite any of the rest of the code.

Naming Convention
Within this report product will be used to describe any resource within the context of
monitoring.

There are two classes of resource that may be monitored. Information about the resource,
which is largely static in nature - for instance the name of the machine, to a user this is

CHAPTER 3. DESIGN AND IMPLEMENTATION 39

Product Name OID Name
infoDescription <-> 1 1.3.6.1.2.1.1.1.0
infoMemTotal <->|1.3.6.1.2.1.25.2.2.0
dataNumberProcesses | <-> | 1.3.6.1.2.1.25.1.6.0

Table 3.1: SNMP OID Mappings

interesting, but it is unlikely that they will want to continuously poll its value, as it rarely
changes. The other class contains all resources which change value regularly and which a

client may be interested in polling:

1. Data - a resource which changes value regularly,

2. Info - a resource whose value is usually static.

By using these class names as prefixes to the product names we add extra functionality - a

client would know what class of data it is looking at by examining its name.

While developing the code to access the monitors a list of available products and the map-
pings to the monitor specific resource names will have to be made. This is another require-

ment of the data store - it will have to hold this table of mappings.

As an example the SNMP monitor uses resource descriptors called OIDs (Object ID). The

data store will have to map OID values to product names.

It makes sense to allow these mappings to work in both directions; a monitor may translate
a product name into an OID in order to query the monitor daemon or a monitor may request

a list of available OIDs from the daemon and translate them into product names.

Monitor Drivers

In order to access the monitors in a standard way, the code, which will talk to each monitor
will need to provide standard functions for the abstract monitor interface to call. The code

for each monitor could be called a driver.

When a driver is loaded it will be given the IP address of a node to try and interface

with (on the standard port for the monitor - this could be extended to allow non standard

CHAPTER 3. DESIGN AND IMPLEMENTATION 40

Monolithic Program Abstracted API

Main Program

Main Program

Abstract Monitor

Monitor Driver Monitor Driver Monitor Driver Monitor Driver Monitor Driver Monitor Driver
1
1
Monitor Monitor Monitor 1 Monitor Monitor Monitor
Daemon Daemon Daemon ! Daemon Daemon Daemon
Resource Resource

Figure 3.4: An abstract monitor

ports). Loading of the driver should fail if it cannot interface with the node. This provides a
mechanism to do automatic discovery of resources, the driver can be loaded for a node and
if it fails to monitor the node, the system knows that that driver cannot be used to look at
that node (probably because the monitoring daemon that the driver talks to is not present).

Monitor Interface

The abstract monitor interface will be used by the system to monitor a resource. All calls
to the drivers will be handled by this interface. The interface will provide a generic view of
a resource regardless of what monitors are actually being used. It also abstracts interfacing

with the drivers away, hiding their functionality as shown in Figure 3.4.

3.2.6 Summary

The components required to build the artefact have been introduced. Figure 3.5 shows a

view of the proposed architecture.

CHAPTER 3. DESIGN AND IMPLEMENTATION 41

Graphical Client

Applet GUI

Client Interface

Site Gateway

Server Interface

Abstract Monitor Product Mapper

Database

Monitor Interface (Dynamic Class Loader)

Local Driver Local Driver Local Driver Remote Driver

Site Gateway

Client Interfac

Figure 3.5: Initial architecture

The next stage in building the prototype is to implement small programs to demonstrate

areas of functionality, which the developer is unfamiliar with or there is no clear solution:

A servlet - to demonstrate remote Java over http,

An SNMP monitor - may be problems getting Java to work with SNMP,

Another monitor so that there is a pool to demonstrate the multiple monitor frame-

work,

An applet client to show communication over HT'TP solving any Java security prob-

lems.

CHAPTER 3. DESIGN AND IMPLEMENTATION 42

3.3 Implementing Test Programs

This stage of design and implementation requires the creation of some programs to demon-
strate that key functionality of the artefact is possible to implement. On completion these
programs will contain tested code, which can be used as a foundation to build a prototype.
When integrated into the prototype artefact they will form a library, client interface, server

interface (servlet) and some monitor drivers.

3.3.1 The SNMP Monitor

Although this is stand alone driver to query an SNMP daemon it is important to bear in
mind where the code is going to be used; as one of many drivers called by the monitor

interface.

The SNMP Protocol

There are currently two SNMP protocols, version 1 and version 2 [36].

SNMPv2 is a revised protocol, which includes improvements to SNMP in the areas of per-

formance, security, confidentiality, and manager-to-manager communications [37].

SNMPv2 is more complicated protocol than SNMPv1. The SNMP daemon provided by
Microsoft with Windows XP and the daemon provided with the Linux distribution Debian
both support SNMPv1 but implement different variations of SNMPv2. This highlights one
of the problems with SNMPv2, implementations seem to extend the specification laid out in
the RFCs. Both daemons implement SNMPv1 in the same way.

Bearing this in mind a more compatible driver would use the SNMPv1 protocol. SNMPv1
supports both the reading and writing of objects. This driver is only required to read values.
There are three read functions the SNMPv1 protocol provides which the driver may need to
interact with [36]:

e GetRequest - supplies a list of objects and possibly values.

o GetNextRequest - is used to walk through a list of values.

e Trap - this allows the daemon to push events to a client. The daemon can be set to

contact the client if certain criteria are met.

CHAPTER 3. DESIGN AND IMPLEMENTATION 43

There is no need to implement the Trap function in this driver, it is interesting to allow a
client to register a Trap for an event with the SNMP daemon but the primary function of this
driver is to allow the value of resources to be polled from an SNMP daemon implementing
version SNMPvl1.

SNMP uses the idea of a MIB (Management Information Base). This is a list of all the
resources, which can be monitored. Each resource is identified by an OID (Object Identifier).

There are different schemas for the MIBs, what that means is that while still supporting the
SNMP protocol different MIBs will contain different OIDs.

The only security implemented in SNMPv1 is the use of a community string [36]. This is
a custom string which must be known before a client can query an SNMP daemon. It is
possible to have multiple community strings and have them bound to different MIBs. There
are standard community names (one reason why SNMP security is poor). ”Public” is used
to describe a read only MIB and is set up by default. For the purposes of this driver the
community name can be hard set to Public, this prevents write access to the MIB but this

functionality is not required.

The SNMP protocol is well defined in the RFC, it would be possible to write an implemen-
tation of it for this driver. Other people have already done this work many times - there
are Java classes available. One implementation was chosen which was written in a way un-
derstandable to the developer in case it needed modifying. It fully supported SNMPv1 and
was released under the GNU license (Free Software). The package details are listed with all
other Java libraries used to develop the artefact in the appendices.

SINMP Monitor Driver

The SNMP driver is a wrapper which will call the SNMP code which does the actual com-
munication. The constructor must test the connection to the SNMP daemon and fail if the
connection does not work. The simplest test of the connection is to retrieve a known OID
value which all SNMPv1 MIBs have. If this does not work the code knows that SNMPv1

communication is not possible and it can throw a Java exception and fail to load.

The get method must accept an OID name and call the SNMP communication code to
retrieve this value. The behaviour if something goes wrong is to return an empty string.
The reasoning is this is a non-fatal error which may be transient. The stateless design

requires that if an error occurs the system can simply retry the failed method.

CHAPTER 3. DESIGN AND IMPLEMENTATION 44

Testing SNMP Driver

A stand-alone wrapper program using the SNMP driver can test the implementation in an

isolated way.

Pseudocode for SNMP test app:

publ i c class SNWPTest {
public static void main (String host Nane){
Debug. out ("Creating Cient for " + hostnane);

try{
SNWPClient testClient = new SNMPC i ent (host Nane) ;

}
cat ch(Agent Excepti on){
Debug. out ("Loadi ng client failed");
System exit(0);
}
Debug. out ("Client | oaded, fetching an QO D");
String oidvalue = testClient.get("1.3.6.1.2.1.1.1.0");
Debug. out ("O D Value: '" + oidvalue + "' ");

This demonstrates how abstraction simplifies the code. The interaction with SNMP is being

hidden at what is still a low level function of the system.

While testing the SNMP driver long pauses were observed when trying to run the client for
hosts that did not have an SNMP daemon running. The SNMP 3rd party communication

code was changed to reduce the time that was waited trying to connect to the SNMP daemon.

/ 1 dSocket . set SoTi neout (15000); //15 seconds
dSocket . set SoTi meout (2000) ; /12 seconds

The initial timeout of 15 seconds produced a lengthy pause when trying to connect to a host
without an SNMP daemon. This is likely to happen a lot when the system is dynamically
loading drivers to probe nodes for resource monitors. The 15 second timeout is defined in the
SNMP RFC. All SNMP communication within this system will take place over a LAN, the

SNMP specification had to take into account other slower mediums. The value of 2 seconds

CHAPTER 3. DESIGN AND IMPLEMENTATION 45

Product Name OID Name

infoDescription | <-> | /proc/version (Proc value)

infoMemTotal | <-> | memtotal.sh (Small program)

Table 3.2: Example Procmon product to OID mappings

was proven using simple tests to always discover an SNMP daemon, even when querying a
slow host, which was under serious load, the code still worked. There may be room to reduce

this timeout further.

3.3.2 Procmon Monitor

Before the developer could write code to handle the loading of multiple drivers it was nec-
essary to write a second driver for a different monitoring protocol. In order highlight the
problems with writing drivers the developer chose to implement a custom monitor with both
a server and a client, which would force issues to be solved when writing the driver abstrac-
tion layer. Other monitoring protocols are either very similar to SNMP or time consuming

for the developer to implement.

Summary of Procmon Monitor

The monitor uses the standard client server paradigm. The client can either request the
contents of a file on the server machine or the result of an application run on the server
machine. The design leverages the virtual file system ”proc” which is present on many UNIX
clone operating systems. Proc holds dynamic information about the state of the machine
which is kept up to date by the kernel. The Procmon monitor allows remote access to these
files and this provides a very simple way to gather resource information. The Procmon design

is outline din Figure 3.6.

A Procmon client sends a request to the server in the form of a path name. The monitor
opens the file and returns the contents. This is very simple but does have problems. Proc
represents a snap shot of the resource information at a given time, which means it is not
possible to monitor something like how many bytes were sent over a network link in the last
second. A simple solution is to allow a client to call a small program on the server which

can do some computation on the values of proc and return the result.

CHAPTER 3. DESIGN AND IMPLEMENTATION

46

Driver (On gateway)

Monitor

Procmon Client

Mib Interface

Resource

RMI

Mib Implementation

Command Execution

File Reader

Iproc

mib/proc

[

ProcPoll.sh

Figure 3.6: The Procmon design specification

CHAPTER 3. DESIGN AND IMPLEMENTATION 47

This produces a very flexible system, which is able to produce a very wide range of resource
data.

3.3.3 An Abstract Monitor

The protoype requires an abstration layer which will use all possible drivers to monitor a

node. Before this can be done a standard interface is needed to access the monitor drivers.

As shown above a difference between the two drivers written is that they use different names
for the OIDs. A layer is required for each driver to translate a standard product name into

a monitor specific name (OID). All drivers could share this translation layer.

OID Name Translation - Product Map

A static library capable of mapping OID names specific to a monitor protocol to a product
name which is a generic description used by the system. The mapping should work in both

directions.

At this point in the project there is no general data store for the system. The Product Map
needs a way to store the mappings. In the later stages of the project there may be a generic
data store capable of holding this information. This must be kept in mind as it may be

desirable to change the Product Map to use this data store at a later date.

The Product Map used a simple relational database (Appendix A) to store the OID map-
pings.

Dynamic Code Loading

To provide extensibility, the abstract monitor can dynamically load the monitoring drivers.
There are two problems to solve:

e Knowing the names of available monitors,

e Loading the code.
To simplify the initial implementation of this dynamic code, loading the names of any drivers

can be hard-coded into the abstract monitor. This could be altered to be fully dynamic at

a later date.

CHAPTER 3. DESIGN AND IMPLEMENTATION 48

The loading of dynamic code in Java can be handled by the mechanism of introspection. It
is possible to extract information about a compiled class at run time. To instantiate a class
dynamically the program must create a specification for the classes constructor, which is
handled by the introspection classes. After instantiation the created object behaves in the

same was as one loaded conventionally.

Summary of the Abstract Monitor

The Abstract Monitor can dynamically load monitor drivers for a given node and expose a
combined translated product name list. The stages of this process are:

1. Abstract monitor is loaded for a node (identified by IP address),
2. Dynamic monitor drivers are loaded,

3. Successfully loaded drivers are queried for all possible OID values that are are in the
Product Map database,

4. The OID names are translated into generic product names by the Product Map and

the list is returned.

Once the Abstract Monitor has successfully loaded it internally maintains the mappings of
generic product names for the dynamic driver. In this way the Abstract Monitor can pass a

query for a generic product name to the correct dynamic monitor driver.

The combining of the product lists is done in a first come first serve manner. If a dynamic
monitor driver tries to register an available product with the Abstract Monitor when the
product has already been registered by another driver the registration will be ignored. This
creates a simple implementation but can be improved; there could be extra functionality
that makes an informed decision about which monitor to use when a product was found

more than once. Things that could be taken into account:

e The speed of a typical response from the class of monitor,
e The effect of monitoring a resource on a system using the monitor,

e The number of products already registered with the monitor.

CHAPTER 3. DESIGN AND IMPLEMENTATION 49

3.3.4 Servlet

The Servlet is the server interface of the system.

Servlets handle method invocation by processing HT'TP requests. A client invokes methods
on the servlet by sending specially formatted HTTP requests. The Java servlet framework
provides classes which process them; this code is hidden in the framework.

There are two ways to encode data using HTTP, Post and Get [38]. Post encodes data in
the HTTP request; this data is not cached (part of the HT'TP/1.1 specification). A Get
request encodes the data in the URL part of HT'TP; this can be cached and may appear in
web proxy logs.

For the developer working with HT'TP, Get requests are easier as they can be created by
hand in the URL bar of a web browser. For instance, this URL would pass the variables

testvar and othervar to the script index.php on the www.dsg.port.ac.uk web server:
htt p: // ww. dsg. port. ac. uk/i ndex. php?t est var =yes&ot her var =3

At this stage in the project there is no client interface to the server, it is important when
writing and debugging the servlet interface that there be a way to create correct URL requests
for the server, until a working client is complete the developer can craft the URLs by hand.

3.3.5 Applet Client

A Java applet provides a way to provide dynamic content to a user. The advantage they
have to a developer over static web based clients is that the applet runs locally on a users

machine. This allows extended functionality beyond that of a server side program.

A Java applet client is required to explore the potential of a client side interface to the
system. An applet is subject to strict security constraints to protect the client machine, this

raises design issues.

Exploring a Dynamic Interface
There are two functions that a client for this system needs to provide:

e A way to navigate the sites, node and choose a product to look at.

e A way to display a product value (in an interesting and intuitive way).

CHAPTER 3. DESIGN AND IMPLEMENTATION 50

A Dynamic Graphical Tree

The site / node / product navigation can be represented in a tree. The focus of the project is
not to look into human computer interaction; a standard solution will be followed displaying
the navigation. Modern operating systems use graphical trees to navigate hierarchical data;
users should be familiar with the interface hopefully making the interface intuitive. The
graphical tree must be dynamic - nodes need to be added at run time as the tree is browsed

and the server returns data. The completed tree class is shown in Figure 3.7.

Figure 3.7: The graphical tree running in a Java AW'T application

Animated Graphing

One way to plot numerical data is on an animated graph. A custom lightweight animation
class can display polled resource information as a line graph. The class implementation is
kept as simple as possible to reduce load on the client machine. The implementation of the
dynamic graphing is shown in figure 3.8. The implementation was kept simple as it is meant

as an example, a fully developed class would label the axis etc.

Java Applet Security Issues

A standard applet downloaded from a web page is un trusted - the user (and client virtual

machine) has no idea what the code is programmed to do. The Java VM provides security

CHAPTER 3. DESIGN AND IMPLEMENTATION 51

ESSS——————————————
S

Figure 3.8: Animated graph class running in an AWT window

preventing malicious acts by the applet to allow un trusted applet to be run in a trusted

environment [39].

This must be taken into consideration when developing an applet. The only code which this
client uses that requires interaction with anything outside of the program, is the network

communication with the server.

The Sun Java Security - Frequently Asked Questions [39] states in Section 8:

"Appl ets are not allowed to open network connections
to any conmputer, except for the host that provided
the .class files. This is either the host where the
htmM page cane from or the host specified in the
codebase paraneter in the applet tag, with codebase
t aki ng precedence. "

For example, if you try to do this from an applet that did not originate from the machine

foo.com, it will fail with a security exception:

Socket s = new Socket ("foo.cont, 25, true);

CHAPTER 3. DESIGN AND IMPLEMENTATION 52

This means that the client is restricted to network communication only with the host it was
downloaded from. Care must be taken to open the communication requests to exactly the
same URI as the serving host - using an IP address or a host alias will make the applet fail

to run.

CHAPTER 3. DESIGN AND IMPLEMENTATION 53

3.4 Design and Implementation of Prototype 1

The first milestone of the project is to assemble a working prototype of the system. It will
not be fully compliant with the specification but will demonstrate that the model for the

system is sound.

3.4.1 Reduced Functionality Specification

Prototype 1 must:

e Provide an applet client to access the system.
e Run on at least three different sites to simulate a grid.
e Allow the transparent handling of inter-site communication within the servers.

e Dynamically monitor a node.

The basic design philosophies discussed in the design introduction will be followed such as
robustness through statelessness. The main omission to the original specification is the lack

of security, which would complicate the debugging of the HT'TP communication.

3.4.2 Implementation

The basic functionality for this prototype has already been developed as separate compo-
nents. The code was extracted and sorted into Java packages to provide structure for the
API.

HTTP Client

A component missing from the first stages of development was a HTTP client to call the
methods of the servlet. As discussed a formatted Get request is used to invoke the methods
on the server. HTTP communication is a common requirement of Java programs but at
the time of writing (JDK1.4) there are no Sun Java classes to simplify the creation of a
HTTP client. It would have been possible to implement a client from scratch but there is a

well used a publicised set of classes to do this provided by Oreilly (see Apendix C for Java

CHAPTER 3. DESIGN AND IMPLEMENTATION 54

package information). Their classes have been released under a free license compatible with

this project.

The Oreilly package is ”com.oreilly.servlet” but although as the name suggests it was written
to support servlets there is nothing to stop its use with other types of Java programs. The
HTTP client should be able to be used by both a standard client such as the applet or for
inter-site communication handled by the servlet gateways.

Inter-site HTTP

This introduces the problem of how to handle the inter-site communication. If a servlet
receives a request from a client requesting information from another site, the servlet must

use the HT'TP client to pass the request to the correct servlet.

The most elegant solution found to solve this problem was to create a remote monitor driver.
This was a monitor driver implementing the same external interface as the standard monitor
drivers, but used the client HT'TP code to pass the request to another servlet. This hid
the behaviour within the abstract monitor and only required one change to the code; The
dynamic driver loader was altered to only use the remote driver if the request was for an

external site.

This introduced a new data requirement; the remote driver needed to be able to look up a
remote sites URL in order to be able to create the formatted Get request required to contact
the remote gateway. This was solved in this prototype by creating a simple table in the same
relational database used for the product map. It is expected that this information will be
stored in some kind of consolidated data store in the next prototype. Figure 3.9 shows the
architecture of the system at this stage with the reuse of the HT'TP client code highlighted.

Automatic Node Discovery

Some functionality was required to provide each site with a list of nodes that could be
monitored. The existing abstract monitor could be used to test whether a resource could
be monitored or not. A scanner method was written which loaded the abstract monitor for
every IP address on the same subnet as the site gateway (effectively every address on the
local LAN) and recorded the IP of any nodes, which could be monitored. A simple table in
the MYSQI/JBDC database was used to record the data; this would be replaced with the

more abstract data store later in the project.

The scanner was set to run every time the servlet was started. In order to speed up the

CHAPTER 3. DESIGN AND IMPLEMENTATION 55

Graphical Client

Applet GUI

_—
7 ™y
Client Interface)

|

Site Gateway

Server Interface

Abstract Monitor Product Mapper

Database

Monitor Interface (Dynamic Class Loader)

Remote Driver

< Client Interfac)

Local Driver Local Driver Local Driver

Site Gateway

|

| |

|

| |
[]

Figure 3.9: Architecture with client code reuse highlighted

scanning process each node was scanned concurrently by using a new thread for each node.

This created a dynamic list of local nodes which could be monitored.

There was an extra motivation for setting this up at this stage of the project; the developer
did not want to have to take the time to maintain a list of available nodes. The automatic
system also kept the list more up to date than the developer would have when the system
was running on an un familiar LAN. Figure 3.10 shows the scanner running multiple abstract

monitors to look for monitorable nodes.

3.4.3 Deploying The Prototype

In order to develop and test the prototype three sites were used. Each site was connected
to the Internet using a broadband comparable connection provided by a different ISP. The
goal was to reproduce a real world environment to explore the issues with running such a

system.

The networks at each site had one gateway computer which the system was installed on, this

CHAPTER 3. DESIGN AND IMPLEMENTATION 56

Scanner Database

prscecconar] | =) (23 C
] | 22 BEE .

Figure 3.10: Automatic node discovery

is illustrated in Figure 3.11. Each network had different resources connected to it using 100

megabit ethernet.

HTTP Issues

At all three sites there were issues with firewall traversal. In each case the gateway computer
was hosted within a LAN where Internet access was provided by NAT (Network Address
Translation). This mean that the gateway computer was not visible from the Internet, the
servlet needs to have at least one port accessible from the Internet for communication to

work.

Forwarding one port from the sites router to the gateway machine solved this problem. Two
of the sites had firewalls, which were altered to allow access to the forwarded port. One
of these two sites was a trusted private network; to further secure the system the firewall
was configured to only allow traffic from the other two site gateways. This had the effect of
removing the capability of this site to act as a gateway computer for the applet client - only

inter site communication was possible.

In each case known HTTP ports were forwarded, it was possible to use the traditional 8080
port at two of the sites (Figure 3.12). At the other site the router was already using this
port so port 8089 was used. This may create an issue with some proxy servers, which are
configured to only allow HTTP traffic from the standard ports. With a deployed system it
would be desirable to use port 80, which is the default port for the HI'TP protocol.

CHAPTER 3. DESIGN AND IMPLEMENTATION o7

Windows

Resources Network Printer

Figure 3.11: The physical sites

The introduction of possible latencies (higlighted in Figure 3.13) when using the Internet to
connect the sites was the first test of the robustness of the system. Issues will be discussed

later.

Code Synchronisation

When running the system on three different sites while it is still being developed there are
possible issues with code synchronisation; When a new feature is added at one site all other
sites must be updated to get the new feature, but more importantly compatibility between
sites might be a problem if the code is not kept synchronised. While automation can be
used to make the process simpler the site synchronisation is laborious and time consuming

for the developer.

The early design of the communication interface layers (servlet and client) means that as long
as the standard interfaces are not changed the sites can still communicate. All functionality
is hidden within the communication layers. This black box design reduces the need to keep
sites synchronised leaving it up to the developer to decide when large enough changes warrant
testing of new code on all three sites.

CHAPTER 3. DESIGN AND IMPLEMENTATION 58

Port 8079
N
SN
! & L[]
\\\
< Client
~ VS
SN
\\ Proxy Server
S
~
S Port 8081
S
S
SN
N
——ow _ S
= ~
-| \‘
a >
—
_—
]
_
_
—_—
Gateway

Figure 3.12: HTTP communication with firewall tunnelling

3.4.4 Prototype 1 Summary

The first protoype fully implements the initial architecture outlined in Figure 3.5 in Section
3.2.6. The completed applet client is shown in Figure 3.14, the graph is animating at
approximately one frame per second which demonstrates the appropriate timeliness of the

artefact at this stage in the implementation process.

The first prototype accounted for a large amount of development time and created a much
better understanding of the design. This process proved the overall concept of the system
is viable. The second half of the design and development of this system will analyse this
prototype with the aim of identifying areas for improvement. The second prototype will
address more advanced functionality which build on this framework.

CHAPTER 3. DESIGN AND IMPLEMENTATION

59

Client Machine

Site Gateway

I

Resource

Resource

Resource

Internet Latency

LAN Latency

/

Site Gateway

T

Resource

Resource

Resource

Figure 3.13: Possible latencies within the system

Bl pSG

EH® UniLan
%132 168.0.103

infoDescription

£ 192.168.0.100

infoDescription
infoMemTotal
infollptime
infoCpu
dataCpullsage

dataEthORecaived
dataNumberProcesses
dataNumberUsers
B} ParentsLan

-

- ——, .. -

Pk

Figure 3.14: Running applet client

CHAPTER 3. DESIGN AND IMPLEMENTATION 60

3.5 Analysis of Prototype 1 and Specification for Pro-
totype 2

This section will look at issues raised during the development of the first prototype and
discuss ways to address them. Going back to the original specification, a new set of re-
quirements combined with the new ones discovered when building the first prototype will
be made. They will be analysed to identify possible problems with the design and ways to
add extra functionality. This will require another set of stand-alone implementation testing
components to prove the validity of ideas - this is the same technique used when developing

the first prototype.

3.5.1 Timeliness

An important requirement of the monitoring system is that it can report data in a timely
manner. Although the first prototype provided data at around one poll per second (timely
enough) it is likely that security overheads will increase latency with later prototypes. The
bottleneck in the system is the HT'TP communication; it is normal for this to be the slowest
component. To address this problem a standard approach of caching data will be used. The
aim of the cache is to reduce the amount of communication over HT'TP.

Cache Design

While the focus is caching the data retrieved over HT'TP, the cache can be used to elegantly
create a system to store any kind of data (including local settings such as the site name). The
cache must store data locally in a relational database; the cache system will need methods
to control access to and updates for the data. Using a TTL (time to live) for cached objects
the system will attempt to avoid the problem of cache stagnation where the cached data is
not the same as the real data at the source [40]. A problem is that the cache does not know

when the data at the source has changed.

There are two mechanisms to address this:

e Time to live (lease time)

e Lease managers [40]

CHAPTER 3. DESIGN AND IMPLEMENTATION 61

Time to Live (TTL) means that the every cached piece of data (object) has an expiry time.
This is an approximation of when the data is likely to have changed at the source. If the TTL
has expired the object is removed from the cache. A TTL provides a simple way to minimise
cache stagnation. It does not solve the problem completely; The TTL is an estimate of when
the object will change at the source, this will sometimes be inaccurate. The two effects on
the cache behaviour are:

e It could expire an object that has not changed,

e It can serve a cached object for which the value has changed.

Both of these are undesirable. In general - especially when debugging the system a low TTL
is helpful to the developer, this avoids stale objects being passed around the network and
minimises the time that the programmer must wait to see the effect of a coding change on
the cache.

A lease manager can notify caches when an objects value changes [40]. It does this for caches
which have the object stored with a lease that hadn’t expired. This means that a cache would
know that any objects it has stored with valid lease times (TTL) are correct. This avoids the
problem highlighted above, but the process of implementing a lease manager is complicated.
It creates an overhead at each gateway where all data served must be tracked to insure that

the manager can check whether changing data affects any remote caches.

The Effects of Statelessness on Timeliness

Every transaction the servlet processes involves the creation of a series of objects to satisfy
the request. The stateless methodology means that these objects are destroyed after the
transaction is completed in order to return the application to the starting state. The creation
of new objects for every transaction is slower than if some of the objects were reused (a
statefull design).

In order to reduce the total object creation overhead and method execution time, while
following the stateless philosophy, the developer has some options:

e Reduce the number of objects needed to satisfy transaction,

e Optimise objects and their methods to load and execute faster,

e Reduce the complexity of objects.

CHAPTER 3. DESIGN AND IMPLEMENTATION 62

Extra functionality provided by the cache for the second prototype is to cache local data
as well as remote data. The remote cache must be built and tested before this idea can
be explored further as it requires an understanding of the speed and overhead of using the
cache. The potential use of the cache for both local and remote data must be considered

while designing it.
subsectionA Universal Data Store

The system has a need for a back-end data store capable of holding various types of infor-
mation. The data which required storing in the first prototype was:

e The list of monitored resources nodes,
e The product map,

e The URLs of remote site gateways.
Producing the cache will create a further data requirement:
e Remote and local data cache

There is the potential for the system to be caching remote data for which it has no product
map. For instance a remote site may have monitor drivers which expose different data than
that of a local site. If the local site caches this remote data it will not have a product map
to describe the data - the data store should avoid having to keep all product maps in sync.
The means the stored information must be self-describing, a general schema can then be
used. The current simple local product map database will be retained as it avoids having to
synchronise caches between sites. All other data will go into the universal data store, which
will have to store a general schema, the relations between the data to provide context and
the data itself. Since a lot of the data will be either a local or remote cache it must also
store the lease time.

This universal data store could also be described as a relational database of relations. The
design of the data store will be discussed further during the next development stage when a

standalone component will be built to test this idea.

3.5.2 Security

In the first prototype, the security requirements of the specification were ignored to reduce

the complexity of the client server communication code and reduce the number of features

CHAPTER 3. DESIGN AND IMPLEMENTATION 63

which needed to be implemented.

The two security requirements laid out in the original specification were encrypted commu-

nication and restricted access to the system.

Secure Communications

The communication code written for the first prototype used the HT'TP protocol. This data
was unencrypted which allowed data to be sniffed by any node it traversed on the Internet,
possibly even worse it could be changed in transit. Which means it is vulnerable to both
passive and active attacks. The second prototype should implement HTTPS (HTTP with
SSL) in order to prevent these kinds of attacks.

Restricting Access

Access restrictions can be split into two catagories:

e Restricting any access to the Grid Monitor system

e Access control lists for individual resources

It is desirable for administrators of a site participating in the Grid to be able to grant
access to their resources rather than have a central authority delegate. In order to have a
decentralised and scalable system the security must be distributed. This means that logon
credentials must be spread throughout the system. It is expected that a deployed system
may use features of the standard Grid Security Infrastructure (GSI) [20], the authentication
scheme should be easily extendable to allow for back end authentication to be changed.

If the assumption is made that users of the system also have a site they are associated with,
the security information for that user could be stored at that site (their home gateway).
When a security check is required a home gateway can authenticate one of its users locally.
If the user connects to a remote gateway that site will contact the users home gateway for
security information, this information could be locally cached to reduce the communication
overhead.

ACL lists can be created to grant users access to resources. Implementing fine toothed ACLs
would be important for a production system but this second prototype will only restrict access
to the system, not individual resources. This feature would take a disproportionate amount

of time for the developer to implement when the main focus of this project is not security.

CHAPTER 3. DESIGN AND IMPLEMENTATION 64

Choosing a Unique Username

This introduces the problem of uniquely identifying a user within the system. In order to
allow a remote security event for a user, a server must be able to derive the users home site

from their credentials.
A simple solution is suggested:

A user name is made up of two parts user@site. Where ’site’ is the unique name of a grid
site and ’user’ is a unique identifier for a user at that site. As an example of this these

usernames would map to a unique user within the Grid:

mat @SG
mat @HoneLAN
mab @HonmeL AN

This makes it possible to only need a username to both uniquely identify each user and

derive their home site to do authentication.

Type of Logon Credentials

A string password is used with the username to authenticate a user. There are more compli-
cated authentication mechanisms using certificates. The aim of this project is not to create

an authentication infrastructure but it must demonstrate a reasonable degree of security.

With encrypted communication it is acceptable to use plain test usernames and passwords
as they will be encrypted during transport.

Parameter Checking

The HTTP Get requests used by the client to invoke methods on the server contain variables,
which are used directly by the servlet. There is no sanity checking done by the server before
it uses this data. This is dangerous from a security perspective as it allows an attacker to
craft specific URLs designed to manipulate the server in a non standard way. Some effects

of this can be:

e Denial of service - crashing the servlet,

e Privilege escalation by manipulating remote data,

CHAPTER 3. DESIGN AND IMPLEMENTATION 65

e Potentially extracting information from the data stores which are not meant to be

public,
e Gaining access to the machine running the servlet,

e DOS against other machines within the site via the monitors.

These are all standard issues when writing code which accepts user input or allows a user to
manipulate the input. In a production system these issues would have to be addressed. In
this prototype they are acknowledged but ignored, as hardening a system is a complicated
process involving auditing the code and thorough testing.

3.5.3 Clients

The applet client demonstrates dynamic visualisation of the system. In order to show the
abstract nature of the interface and the portability of the communication code, an HT'ML
client will be developed as part of the second prototype. This interface will take the form of

servlet running the same client code as the applet and displaying the data as a web page.

This client also allows demonstration of the system on client machines where a Java VM is
not available.

CHAPTER 3. DESIGN AND IMPLEMENTATION 66

3.6 Components for Prototype 2

This second prototype will be more functional than the first. In order to explore new ideas
and test implementations same methodology used earlier of creating stand-alone components

to test ideas will be used.

3.6.1 Relational Data Store

All data used by the system except the product map will be stored in one database. The
traditional way to do this is to use a fixed schema database to store records. This does not
allow flexibility to add new kinds of data without changing the structure of the database.
The proposed approach is to store the relations between the data in the database with the
data. This provides a way to describe the data by walking the relations.

Index Table

The database has two components; a data table and an index table. The index stores names
of any entities which will be store in the database. At a low level these could be ’String’ or
'Date’. This would be a more abstract view of the database. Because this data store is going
to be used specifically for this system the index can be set up to contain a list of higher level

entities.

The entities that exist are:

si t eNane

| ocal Si t eNane
siteServl et Ul
nodel p
nodeName

pr oduct Nane
user name

user Password

The Java variable naming convention is used to be consistent with the implementation. All

items in the database are classified by one of these entity names.

CHAPTER 3. DESIGN AND IMPLEMENTATION

Data Table

The data table stores the data, the relations it has and a lease time, which is the cache time
to live. If data being stored is does not expire, a lease time of 0 can be used. The database
is storing a tree data structure in a matrix. If a single record is looked and only the data
is shown, it has no context. The tree data structure must be navigated in order to give
any data other than a root node context. The table holds two relations, one is the link to
the data class in the index table, and the other is a link to the parent node. It is possible

for a parent to have multiple children but a child can only have one parent (one to many

relationship). Example relations are shown in Figure 3.15.

UniLan

A 4

Y

192.168.0.36

gridmonitor/Monitor

https://unipinglj.no—ip.com:8080

192.168.0.102

¥

A v

infoDescription \

infoMemT otal

A 4

infoUptime

A

dataNumberUsers

A 4

A 4 Y

dataCpuUsage

A

infoDescription

Figure 3.15: Example cache objects and their relations

Traversal of the Data Store

To run a query on the data store all of the parents of a child must be known. The query
is run as a set of sequential SQL statements which walk down the parent nodes until the

child is found. This was implemented using a simple, powerful recursive algorithm which is

CHAPTER 3. DESIGN AND IMPLEMENTATION 68

included below:

// function to recursively query the datastore for a value
// each item on the stack is a datald to a child
// and a linkld for the type of entity
// the last item on the stack is the child querying for
// so it has no relation link as it has no children
public static Vector recursiveGet(Stack theStack, String lastDataLinkld){
String values[] = (String[]) theStack.pop(Q);
if(1theStack.empty()){
// run the sql for the query
Vector keyAndLease = RgmbQuery.getKey(values[0], values[1],
lastDatalLinkld);
if('keyAndLease. isEmpty()){
//7 it all went well with sgl set the link id for the next child
lastDataLinkld = (String) keyAndLease.get(0);
// and call self again
return recursiveGet(theStack, lastDataLinkld);
}
else{
// wasnt found, return with empty
return new Vector();

}
}
else{
// base case has been met
//return the value of the item linked with DataLinkld
return RgmbQuery.getValues(values[0], lastDataLinkld);

}
}

3.6.2 Cache

The data store allows a lease time to be saved with every record. In order to use the cache
a layer needed to be implemented through which all data traversed. The abstraction was
added by inserting a layer between the monitor driver manager and the servlet front end.
This meant that any query for data went through this layer, the changes to the API are
outlined in Figure 3.16.

CHAPTER 3. DESIGN AND IMPLEMENTATION 69

Choosing Lease Times

This is potentially a complex issue. A best-case lease time would expire exactly when the
data looses integrity and is no longer accurate. A cache can be programmed to adapt its
lease times to try and get as close to this best-case scenario as possible. One way it can do
this is by recording data about how often a lease time was accurate and by how much and
adapting the lease times to try and make them more accurate. Another method is to use

historical data to try and predict the most accurate lease time of a piece of data.

A fully developed system would have a lease manager which would handle notifications to
other caches and choose the lease times for objects. With no lease manager cache uses hard
coded lease times for all objects. The exact value was varied during development but ten
minutes was used for all objects except monitored product values which were set to not be
cached. This was done to simplify testing the system, the addition of the cache introduced
another element to the debugging environment, a more dynamic cache creates potentially
hard to track behaviour. Ten minutes is high enough that the developer always new what

was in the cache while testing.

3.6.3 Web Client

The web client is a servlet based interface to the system which allows, via a clickable HTML
interface, access to the system without the need for a client side Java Virtual Machine. A
very simple navigation system was used representing the Grid as a hierarchy which could
be navigated through. Data is not polled for a user, if they wish to renew their view of the
system they refresh the web page. Apart from the benefits of allow easy demonstration of
the system to people with limited control over the software available on their pc the web
client demonstrates reuse of the client code developed with the applet client. Very little new
code was required to create the web client, most it was HTML generation. A screen shot of

the web client is shown in Figure 3.17, it is included for completeness.

3.6.4 Secure Sockets Layer

Moving from HTTP to HTTPS. The developer had known that this would be required at
the end of the project, the reason it was left to be one of the last things was that it is much
easier for the developer to debug communication code using the plain text transmissions of
HTTP. HTTPS is encrypted which means no remote communications could be inspected

during programming, which was not desirable.

CHAPTER 3. DESIGN AND IMPLEMENTATION 70

Server Configuration Changes

The Java servlet framework provides all of the socket communication handling for access to
servlets. The first stage of the conversion was to configure the Tomcat servlet engine to use

an SSL socket instead of a plain text one.

SSL communication happens in a trusted environment which uses X.509 [3] certificates to
prove a servers identity. The certificate is signed by a trusted authority (at a monetary price)
and a client will trust the certificate as long as it matches the server and has been properly
signed by the trusted authority.

The developer could not afford to get a certificate signed for the project. In a development
environment it is common for a developer to self sign the certificate (doing the job that the
trusted authority would). This creates a valid certificate but remote clients will not trust it
by default. A self-signed certificate was used for the SSL socket of the Tomcat server, a web
browser fetching a page over this socket would prompt a user to view the certificate as it was
not trusted. In this case the user makes the decision about whether to trust the certificate.
In the context of this project it means that any user of the web client would need to ’ok’ a
dialogue box before they could use the SSL enabled client.

Another issue with the certificate was the server host name. In an X.509 certificate the
server name is listed. A client checks that this name matches the DNS name of the server it
is talking to. Within the development environment some of the servers running the servlets
had two different host names for remote and local access. This meant that the host name in

the certificate would not match the server name on both the internal LAN and the Internet.

A web browser adds a warning about this and as with a self-signed certificate the user makes
a choice about whether to accept the certificate. This would not be an issue with a deployed
system but was present because of the developers home LAN. The problem and the browser

behaviour are shown in Figure 3.18

CHAPTER 3. DESIGN AND IMPLEMENTATION

71

Graphical Client

Applet GUI

Client Interface

Site Gateway

Server Interface

Cache

Abstract Monitor Product Mapper

Monitor Interface (Dynamic Class Loader)

Local Driver Local Driver Local Driver Remote Driver

Datastore

Client Interface

Site Gateway

Figure 3.16: Revised architecture with new

cache layer

CHAPTER 3. DESIGN AND IMPLEMENTATION

72

=10l %]
e @ Poass Db gy e O o8 —
F-j%ar-‘] na“ -?:gr I& https: [meflibble. uni. lan: 8080y gridinterf ace M'WebInterf ace?s=Unil angn 192.168.D.J oA _Search H.IFU !
WhBookmarks
i ————————

r_.' ™ — 1
N Mat Grove - Grid R ~CE
K

irce Monitor

Html Interface

UniLan : 192.168.0.32 : Product List
Applet Interfac
—— datahumberlsers

2
SR EUCEEEEN datahumberProcesses 23
nfoMemTotal 523760
infoDescription

Hardware: x86 Farmily 6 Modal 4 Stepping 2 AT/AT COMPATIBLE -
Software. Windows 2000 Version 5.1 (Build 2600 Uniprocessor Free)

[Z o | Done

Figure 3.17: Web client monitoring node 192.160.0.32 in site UniLan

CHAPTER 3. DESIGN AND IMPLEMENTATION

73

X509 Certificate

Certificate Nam@yw

Signing Authority: Mat Grove
Remote User

Expire Date: 25/08/2010

(gateway.no-ip.com

Security Alert '_K_I

Information pou exchange with thiz sile cannot be wiewed or
by others. However, there is a problem with the site's
secunty cetificate

[\ The seourity certficate was issued by a company you have
not chosen to tust. View the certificate to detemine whether
pou wiant o brust the certifying autharity.

o The security certificate date is valid.
Ny The security certficate has an invalid name
Do pou want bo praceed?

View Cedilicate

Site Gateway ¥~

(gateway.uni.lan)

X509 Certificate x

Local Devloper

Certificate Name: gateway.uni.lan Infarmatian pou exchange with this site cannot be viewed or
o . changed by others. However, there is a prablem with the site’s
Signing Authority: Mat Grove secunty cenificate.

Expire Date: 25/08/2010

A\ The security certficate was issued by a company you have

not chosen o lust. View the certificate to detemning whether
pou want b bust the cerlifying authority.

o The security certificate date is valid.

o The security certificate has a valid name matching the name
of the page you are tiving to view.

Do pou want la procesd?

Yiew Cedtificate

Figure 3.18: Certificate checks and browser dialogue boxes

CHAPTER 3. DESIGN AND IMPLEMENTATION 74

Issues Changing Communications Code to HTTPS

Changing the client code to use HT'TPS was trivial because of the way communications was
encapsulated, but there were serious problems involving the certificates.

As described, if a web browser cannot automatically validate a certificate it falls back to
asking the user to make the decision. When Java code is being used to do the HT'TPS
communication it is not possible to ask a user to validate the certificate (especially when the
communication is servlet to servlet - there is no user involved).

The developer must implement code that changes the behaviour of Java to override the
certificate checks, which would fail even though as far as the development system is concerned
the certificate is valid. A Promiscuous X.509 Trust Manager was written to validate the self-
signed certificates. The new trust manager validated the certificates by altering some of the
checks.

At this point the test component HTTPS client could use the new communication code to

connect to system over HT'TPS.

3.6.5 Access Control

The stand-alone access control component must be able to parse the username into user and
site. When the second prototype is assembled the servlet must have its interface changed
so that every client query also has the username and password sent. Because the servlet
is stateless every transaction requires the logon credentials. This is another candidate for
using the cache to reduce remote communications as authentication checks may be done at
a remote site over the Internet - a potential remote authentication for every query from a
client would impact the timeliness of the system.

CHAPTER 3. DESIGN AND IMPLEMENTATION 75

3.7 Implementing the Second Prototype

The design and implementation of code up to this point has allowed in depth analysis of
the issues of creating the system. This final prototype should support the overall design
philosophy and be as fully featured as possible.

3.7.1 Change of Internal API Structure

The addition of new features added during development create new requirements for the API.
At this stage of the project it is possible to build a more abstract system using a cleaner
implementation made up of the best ideas from previous work. With any developing system
which evolves, changing requirements mean that at some point it is better to stop adapting

the old system and create a new framework.

Data Cache

The development of the internal data cache changed the flow of information through the
system. This is a fundamental change to the design but creates major benefits to the

timeliness of the system.

Authentication

The addition of front-end authentication required simple changes to the servlet interface.
The more interesting opportunity it presented was to make the authentication back-end
use drivers, in much the same way as the back-end monitoring system. By abstracting
authentication remote and local methods could be hidden bellow a manager the same way

that the monitor drivers are hidden bellow the abstract monitor interface.

If plugins could be used for authentication then the system would be much more extendable.
The initial idea was to have a user authenticate against a local database as part of the data
store. Authentication drivers would mean that any authentication system could be used such
as a Windows NT Domain Controller or Globus GIS. The assumption is made that some

Grid sites already have an authentication system, or use the developing grid standards.

CHAPTER 3. DESIGN AND IMPLEMENTATION

76

Gateway API

Graphical Clients

Applet GUI

Client Interface

Servlet GUI

Client Interface

Server Interface

Cache

Monitor Manager

Product Map Manager

Authentication Manager

Generic Plugin Manager

Generic Plugin Manager

Generic Plugin Manager

Local Driver

Local Driver

Remote Driver

Local Driver

Local Driver

Remote Driver

Local Driver Local Driver Remote Driver

Datastore
Manager

Generic
Plugin
Manager

Local
Driver

Local
Driver

Local
Driver

Client Interface

Figure 3.19: Fully pluggable API with plugin mananger

3.7.2 Fully Pluggable API (Generic Plugin Manager)

The features that are plugable in this design are:

A plugable data store has not been discussed. It means that a dynamic driver can provide

Data store,

Monitors,

Authentication,

Product Map.

the back end database, which provides the services for the cache. This project used mySQL

but by abstracting it allows for it to be easily changed to using any other kind of database

(data store) like R-GMA or an Oracle.

Each plugin category has an abstract manager, this manager uses a generic plugin manager

to load dynamic code. A generic plugin manager is a very powerful component. The changes
to the API are outlined in Figure 3.19.

When dynamic code loading was previously explored the main issues addressed were:

CHAPTER 3. DESIGN AND IMPLEMENTATION 7

e Knowing the names of available plugins,

e Loading the code (using introspection).

The naming problem was solved in the first prototype by hard coding the plugin names.
This is not ideal and was only done by the developer as a simple fix. It is desirable for the

plugin manager to be able automatically discover what plugins are available.

When only loading one type of code (the abstract monitor loading only monitor drivers)
classification of plugins is not an issue. With a more generic system there needs to be a

system by which the plugin manager can distinguish between different classes of plugins.

The plugin manager must have an interface which allows the program to specify which class
of plugin is required. It will also need to be able to look for a specific plugin implementation

(such as a remote driver).

Naming and Dynamic Discovery

Within the context of dynamic plugins the four classes are:

DataStore

Monitor

Security

ProductMap

These are grouped by implementation; each of which can contain one of more plugin classes.
The implementation type describes the technology used to provide the plugin. Examples of
implementation types are:

Implementtaion | Description

jeifs Windows N'T domain controller access
local Anything specific to a site

remote All remote communications

snmp Plugins using the snmp monitor

Table 3.3: Implementation types

CHAPTER 3. DESIGN AND IMPLEMENTATION 78

Some of the implementation types can provide plugins of more than one class. The best

example is the "remote” type which could potentially provide all of the plugin classes.

By way of example a list of implementation types and plugin classes which were actually

implemented is shown:

Implementation type | Plugin class
jeifs Security
local ProductMap
remote Security
remote Monitor
snmp Monitor
procmon Monitor

Table 3.4: Implemented drivers

Physically storing the plugins in a directory structure, which follows this classification system
allows the plugin manager to discover available plugins by doing a normal directory listing
(see Figure 3.20). A filter is used by the discoverer to return specific plugins allowing fine-
grained selection, such as ”all monitors except the remote implementation” or ”"only the
remote security plugin”.

File Edit View Favorites Tools Help

O Back = () ? P Search Folders > | J x n El"
Falders X | | & ManitargSerdetCliert. cdass
=3 arg :J = Monitor class

=1 Monitor java
:ﬁ_, Security, class
E Security. java

= i) Qrid

) client

) mds

) ronitar

) phogins

=1 modules
) jcifs
) local

[[

+{L) procmon

) rgrib
_J snmp
+-) security
+-_) suppork
+1 40 gridclients

Figure 3.20: Screen shot of plugin directory structure showing the plugin classes for the

‘remote’ implementation type

CHAPTER 3. DESIGN AND IMPLEMENTATION 79

Dynamic Loading and Dynamic Access

Inheritance and introspection are used to create the dynamic objects from the plugins which
static code can then access. Inheritance is used to provide interfaces to the dynamic code
- this means that when the plugin manager loads an object it casts it using a plugin class
definition, this describes the methods which all of the plugins of that class must provide.

Summary of Plugin Manager

After converting the system to using the generic plugin manager, adding functionality like
extra monitor drivers becomes extremely simple for the developer. Debugging while using
dynamic code is more difficult for a programmer, as formulaic code execution is not always
obvious - the order in which the plugin manager returns plugins was designed to be consistent

to try and help the developer.

3.7.3 Adapting the Servlets to use SSL

The HTTPS client code described in the last section was written and tested as a stand-
alone component. The methodology of developing and testing code and then porting it into
the prototype had worked for every component built. Replacing the HT'TP communication
client that the servlets (the web client and the main server) should have been no different.

The developer found that the same code called by a stand-alone program was calling different
libraries to when the code was called by the servlet. This was an interesting implementation
issue. After tracing code execution it was discovered that a servlet creating a HI'TPS URL

by default will use the function:

com sun. net. ssl.internal.ww. protocol . https. Ht psURL_
Connecti ond dl npl . get I nput St reant)

While a stand alone component would use:
sun. net . ww. pr ot ocol . htt ps. Ht t psURLConnect i onl npl . get | nput St ream()

This highlights a problem with implementing and testing components outside of the environ-
ment that the prototype would execute in. The developer could not find any documentation
about this behaviour. The solution was to force the servlets to use the same SSL libraries

that a stand alone component would with a simple Java command:

CHAPTER 3. DESIGN AND IMPLEMENTATION 80

System set Property("java. protocol . handl er. pkgs", "j avax. net.ssl ")

3.7.4 Summary of Prototype 2

All of the components and previous work contributed to the implementation of the second
prototype although the major change to a fully pluggable API meant a great deal of small

changes were required for existing code.

The completed second prototype demonstrates a working distributed grid monitor. It uses
dynamic code loading to provide back-end functionality to be extended easily, this means
that it can be deployed on systems with non-standard configurations. Although Java itself
is portable it is often the case that systems have prerequisites which make the porting of an

application difficult.

An example is the RGMA system which will only install by default on to Redhat Linux
distributions with mySQL. RGMA can be adapted to run on any Linux distribution and the
code could be altered to use a different relational database but the developers do not make

this easy.

It is important for the adoption of a Grid system that it be easy for a site administrator to

install, use and control the system.

Chapter 4

Evaluation

4.1 Evaluating the Final Prototype

A continuous process of testing was part of the iterative design and implementation method-
ology followed. Debugging a distributed application can be difficult. With software running
in more than one location the approach the developer used was to have multiple debuggers
running for each instance of the software. Clocks were synchronised between machines and

time stamped logging was used to create a view of the execution of the distributed system.

This chapter aims to evaluate the final the prototype and the architecture design which it
was developed to prove the concept of.

4.1.1 Comparison of Features to Specification

The completeness of the functionality of the second prototype can be measured by comparing
it’s features the original aims set out in Chapter 1. Some new requirements were added during

the design and implementation stages, these will also be analysed.

Abstract Monitoring Layer capable of monitoring via Multiple Protocols

The final API contained an abstract monitoring interface that provided dynamic monitoring
of resources using available monitors. This aspect of the implementation spurred the use of
a fully dynamic pluggable API, which can load Java classes at runtime. This functionality

was extended to allow more of the program to be abstracted in a similar fashion.

81

CHAPTER 4. EVALUATION 82

Heterogeneous Execution and run on most Grid Hardware

The system was only deployed on Linux x86 based hardware. This was a limitation of the
resources available to the project. The use of the Java programming language and Tomcat

servlet engine would in theory allow the system to be deployed on any hardware with a Java
VM.

During implementation of the dynamic code loading care was taken to insure system in-
dependence. When dealing with lower level functions (such as file handling) it is easy for
a developer to fall into traps, which make the code un-portable. The classic examples are
file descriptors, which use different syntax on different operating systems. For example c:
on windows does not exist on UNIX based systems. Where appropriate the developer used
Java system calls to programmatically discover properties of the running system, this allows
the program to avoid using hard-coded system dependent syntax. With the example of file
handles, the Java VM can report the delimiter for separating files and directories on the host
machine, under UNIX it would report ” /” and under Windows ”

”. This is an important feature and was not overlooked while programming.

The Procmon example monitor would only work under UNIX operating systems which had
the proc file system available. This is not a limitation of the system as Procmon is only

intended as a test program for developing the artefact.

Distributed Security Model

The prototypes security API is pluggable in the same way that monitor drivers are. This
allows for any authentication mechanism to be used. It is expected that in a deployed system

a Grid security system would be plugged in (possibly GSI [20]).

The system supports remote and local authentication of users at site gateways, which means
that a user can connect to any gateway. They would not be able to authenticate if their
home gateway with their logon credentials was not available. This would be avoided if a
distributed security system to be used as a pluggin. This could also be handled through
some kind of replication of security information throughout the system.

Encrypted Communications

All remote communication is handled by HT'TPS which means it is encrypted using industry

standard techniques.

CHAPTER 4. EVALUATION 83

Firewall Traversal

By using HT'TPS for transport the system uses a standard firewall traversal technique. The
prototype sites did have some problems where they were using HTTPS on non-standard
ports. Some application proxies are configured to only allow HTTPS communication on
port 443 (the ISO standard HTTPS port). If the system was deployed it would be desirable

to use this port to allow maximum firewall penetration.

No Single Point of Failure

Each site gateway is completely self-contained. If a user is connected to a site and requests
information from another site which has become unavailable the system will handle the
failure gracefully. The user can repeat the request as often as they choose. As the system is

stateless repeating a failed method is safe.

A user cannot connect to the system if their home is not available as they will not be able to
authenticate. While this is a single point of failure for that particular user the actual system

remains functioning regardless of the number of sites, which are available.

The list of other site URLs is hard-coded at each site, thus replicating the data at each
site. If the system was altered to automatically discover the sites it would need to use a
distributed mechanism to avoid introducing a single point of failure such as a centralised

lookup service.

4.1.2 Universal Data Store

This requirement was added to the initial specification during the design and implementation
stages. It is a set of code and a MySQL database which allow any relational data to be
stored. Adding new relations and data types is possible without changing the structure of
the database.

4.1.3 Maximum Acceptable Latencies (Timeliness)

Figure 3.13 in Section 3.4.3 shows the possible sources of latency in the system. The HTTP
timeout length between the client and the server governs the maximum length of time that
can be taken to process a request as this is the first HT'TP request to be issued. This value is

well above what could be called timely; a more realistic value for a user to wait for a request

CHAPTER 4. EVALUATION 84

would be 5 seconds. Using this value it is possible to calculate the maximum acceptable
latencies within the system, but first the different ways that a servlet can process a request
from a client need to be described; Figure 4.1 shows the decision tree that the servlet uses

when handling a request:

The bottleneck within this system is the remote communications over the Internet. A maxi-
mum latency for remote communication can be calculated. The time taken for each process
that may make up a request is measured. The worst-case scenario is created for all local
requests.

The local processes of the request always took approximately 50 Milliseconds to complete,
this includes the time for up to 5 cache look-ups and one dynamic monitor and one authen-

tication.

LO = Local overhead
MT = The maximum time to complete the whole request
NR = The number of remote communications required to complete the request

RC = Maximum latency of each remote connection

Worst-case scenario (most remote requests):

1. Client requests to server
2. Gateway does remote authentication
3. Gateway forwards request to remote gateway
4. Remote gateway monitors node
MT = 500 Milliseconds

NR =3
LO = 50 Milliseconds

RC = (MT . LO) / NR
= (500 . 50) / 3

= 450 /3

RC = 150 Milliseconds

CHAPTER 4. EVALUATION 85

The maximum total latency for the remote communications in this case is 450 Millisec-
onds and the average maximum latency for each part of the remote communications is 150

Milliseconds.

4.1.4 Automatic Node Discovery Issues

The automatic node discoverer shown in Figure 3.10 in Section 3.4.2 suffers from the sim-
plicity of its design. The scanner creates a new thread with an abstract monitor for every
IP address on the same subnet as the gateway.

This means that the scanner will only ever find nodes on in the same IP block as the gateway.
It is assumed that a deployed system would use a more intelligent mechanism for choosing

which IP addresses to probe.

The scanner also suffers from a design flaw which was not found until it was deployed across
all of the sites. The primary site gateway which was used for development work was a much

more powerful machine than the other two test sites.

Primary site: 800mhz Athlon 128mb Ram
Test site 2: 400mhz PentiumlII 64mb RAM
Test site 3: 200mhz Pentium 32mb RAM

The scanner had no rate limiting when spawning each new thread. On a 24-bit IP block
there are 254 addresses. The scanner created 254 new threads as fast as it could. The
Athlon handled this fine. On the other two test systems an explosive consumption of all
system resources was observed. This resulted in the creation of new threads failing on those
machines. A simple fix was introduced which added a time delay of one second between
thread creations within the scanner. This prevented the consumption of all of the resources
as some threads completed before enough new ones were started to consume all available

memory.

A more advanced approach in a more sophisticated scanner would be to set a limit on the
number of concurrent threads and only allow new ones to be created when one had finished.

4.1.5 Maintainability and Extendibility

The pluggable API with dynamic code loading makes the architecture extremely extendable.

New drivers for monitors, database back-ends and authentication can be added without

CHAPTER 4. EVALUATION 86

changing the main servlet code.

The example client interfaces were developed using a standard client communication library;
any new or extended functionality clients would use this library, which abstracts the interface

to the servlet.

All of the programming uses standard software techniques suck as object orientation, abstrac-
tion and encapsulation in order to produce self-contained code. Hiding functionality through
object orientated techniques allows a developer to tackle the parts of the implementation
they wish to change without necessarily having to analyse all of the program.

4.2 Testing the Final Artefact

While constant iterative testing proved the correctness of the code during development, it is
important to evaluate the final artefact. The behaviour of the system in real use is described

here.

The client interfaces to the system do not allow any data to be inputted by the user. They
derive all of the information from the system by interacting with the site gateway and then
allow the user to choose what they wish to do. This simplifies the testing of the system, as
the information presented cannot be invalidated by user error.

The data cache provides a buffer for the loss of connectivity between sites. To test the Grid
was fully explored through the user interface and then one of the Grid sites was shut down.
The view of the Grid remained the same even though one of the sites was not on. The site
was restored before the cache T'TL expired and the system continued to run normally.

If a user is connected to a gateway that looses connectivity, or the users Internet connection
has a problem their client will stop receiving all information and the client displays a network
error message. The user can either wait until the site becomes available or connect to another

gateway.

If a user tries to start using the system while their home gateway with their security cre-
dentials is not available (and the information is not cached) the user receives a user name
password error when they should see a message explain that their home gateway is offline -
this is an oversight.

CHAPTER 4. EVALUATION 87

4.3 Analysis of Final Architecture

The project produced an architecture for an Abstract Grid Monitor, Figure 4.2, the work to
develop the prototype proves the viability of it (the prototype is a working example of this
design). Critiquing the architecture, one of the key design aspects is both its main strength

and weakness; the stateless philosophy.

The stateless design allows for an extremely robust prototype. It would be very hard to
increase the efficiency of the local services such as the cache and monitoring without changing

to a state full design, which would allow:

e Easier implementation of a lease manager (which must track all leased data and handle

notification of changes to remote caches).

e Persistent monitors removing the performance hit of having to do full discovery on a
node every time a value is polled. A driver pool of available monitors would be more
efficient. It would also allow the drivers to do lower level caching as they can preserve

their state.

e The possibility of streaming data (a persistent connection between client and server).

This may be more efficient in some circumstances than repeated polling by a client.

4.4 Evaluation of Project Management

The design and implementation of such a functional prototype was ambitious. The redesign
of the architecture between the first and second prototype was expected from the beginning.
However the dynamic code and pluggable API were extremely difficult for the developer to
implement, which put pressure on the original milestones of the project outlined in Section
1.4.

The failure to implement a fully functional leasing cache (which was not in the original
specification) was due to time constraints.

The project prototype and architecture would benefit from one more iteration of design and
implementation process outlined in Figure 3.1 on Section 3.1.3. The next logical step would
be to use the tested robust architecture to create a more feature rich and efficient system

based on a state full model.

CHAPTER 4. EVALUATION 88

The stateless philosophy made producing the prototypes possible within the time frame. It
is unlikely that the developer would have been able to complete a state full architecture,
which was as robust (or even nearly as robust) as the stateless one is, within the time frame

of the project.

4.5 Summary

The iterative design and implementation process leveraged the developer’s programming
experience to create a working system. The problem was tackled from a practical point
of view, with the goal always to create working software. This acted as a motivator for

innovation from the developer as design and implementation issues were solved.

The final prototype fully implemented all goals set during the project, it is hoped that the
report will aid future work in the Grid monitoring middleware area of study. Some parts
of the implementation, notably the dynamic code loading and universal data store, stand
out as advanced components, which are likely to be reused in future projects at least by the
developer and perhaps by other groups.

CHAPTER 4. EVALUATION

Request from
client

Look up request in
local cache

alue not in
cache or data
expired

Load driver
manager

Request is for
remote node

Request
satisfied

Request is for
local node

Monitor data

Return value to
client

Pass request to
remote site

Look up request in
local cache

alue not in
cache or data
expired

Load driver
manager

Request
satisfied

Request is for
local node

Return value to
client

Return value to
client via gateway

Monitor data

Return value to
client via gateway

Figure 4.1: Servlet request handling decision tree

CHAPTER 4. EVALUATION

90

Graphical Clients

Applet GUI

Client Interface

Gateway API

Servlet GUI

Client Interface

Server Interface

Cache

Monitor Manager

Product Map Manager

Authentication Manager

Generic Plugin Manager

Generic Plugin Manager

Generic Plugin Manager

Local Driver Local Driver Remote Driver

Local Driver

Local Driver Remote Driver

Local Driver Local Driver Remote Driver

Datastore
Manager

Generic
Plugin
Manager

Local
Driver

Local
Driver

Local
Driver

Client Interface

Figure 4.2: Final acrhitecture

Chapter 5

Conclusions

5.1 Summary

The project set out to create middleware using existing monitoring technologies to gather
resource data and then Grid concepts to disseminate the information in a controlled and
secure manner. To develop this system and prove its validity a fully functional prototype
was constructed using a rolling development methodology. The iterative design and imple-
mentation process allowed ideas to be explored which helped to increase the quality of the

final artefact.

5.1.1 The Artefact

The highlights of the artefact are:

e An elegant data flow through the program, making for simple interactions through the

various API layers,
e A universal data store, a useful and powerful component,
e Dynamic code loading, that will be reusable outside of this project,

e Security, via HI'TPS support and access control.
The weaknesses of the implementation are:

e Optimisation of the source code,

91

CHAPTER 5. CONCLUSIONS 92

e No installation script - you just unpack the source code and compile it, it would be

nice if an automatic system did this for the user.

5.1.2 The System Architecture

It is hard for the developer to critique the system architecture, it compliments the existing
Grid infrastructure, from an abstract view it is not very original; it is based on standard
Grid concepts. The implementation view of the API is supported by the artefact, which
proves that the design is sound.

5.2 Meeting the Project Objectives

The developers’ background is mainly technical rather than theoretical, playing on program-
ming strengths allowed the prototype implementation to follow the design goals relying on
innovative code to overcome any problems. There were issues with the software toolkits,
such as Tomcat, that were solved by using Internet search engines to find reports from other

developers who had the same problem. For example, how to set up a servlet.

Some implementation issues could not be resolved by searching the Internet, as there was
no previous solution to the problem. The best example of this is the problems encountered
with the servlet implementation of SSL, many references were found to the problem but no
one had published a solution. The developer has posted his findings to the relevant Internet
discussion boards so that others can critique the work and hopefully it will be of use to

programmers who have the same problem in the future.

Writing the report in time is obviously a major objective, the author managed to keep the
work on schedule by leaving as much time to do the write up as possible. This applied a lot

of time pressure during the development of the prototype which meant long working hours.

5.3 Possible Future Work

e The project only implemented two monitor drivers: SNMP and Procmon. In order to
further prove quality of the driver loading and abstract monitor more drivers should

be written.

CHAPTER 5. CONCLUSIONS 93

e Username and password authentication could be replaced with more advanced security

based on the immerging Grid standards.

e A historical data client could be added. It would likely take the form of another servlet
interfacing with the Grid monitors and recording data for future use. It would not form
part of the actual Grid monitor it self and would use the standard client interface to

interact with the system.

e Change the transportation of data to use R-GMA: future versions of R-GMA may be
easier to work with. It might be possible to extract the required functionality from the
R-GMA packages simplifying use of the system. Using R-GMA would provide a Grid
standard transport layer and remove some of the more complex remote implementation

code from the abstract Grid monitor.

e If R-GMA is not used the interface to the server could be altered to be compliant
with the R-GMA specification, or another Grid transport layer. This would likely
evolve adding XML support to the gateway servlet, as this is becoming the standard

for information passing.

5.4 Project Reflections

The implementation of a large, relatively complicated prototype rekindled the developer’s
love of programming. Distributed system programming is a fascinating area of study and
the youthful nature of the Grid project means there is a lot of work still to be done for the
first time.

Given a chance to change the way the project was managed, the main alteration would be to
start work on the prototype earlier to maximise the number and quality of features included.
A more traditional design and implementation process, such as the well-known Waterfall
method, would have made the writing of the report simpler. As it is, the author hopes that
the slightly non-standard, but honest, approach of writing about the actual process rather

than trying to make the project fit a formal model is more interesting to read.

The Procmon monitor was installed to monitor the developers home LAN, although writing
the review chapter increased awareness of the strengths of over monitoring systems and it is

proposed to move to using Ganglia.

CHAPTER 5. CONCLUSIONS 94

5.5 Final Summary

Milestones within the project are extremely important to keeping work on track. Keeping up

with them requires either very good personal organisation skills, or a high level of motivation.

The area of study was extremely interesting to the author who hopes to peruse the topic

further in the future. There is a lot of work to be done in the area of distributed monitoring.

Throughout the development the use of standard Java and object orientated programming
concepts saved time and effort. It is important to note, however, that OOP can over com-
plicate some things. It is often the case of the right tool for the right job, static procedural
code should not be overlooked just because the development language is Java and object

programming is the norm.

Bibliography

[1] Understanding PKI: Concepts, Standards, and Deployment Considerations - Carlisle
Adams and Steve LLoyd - Sams - 1 November, 2002

[2] The SSL Protocol Version 3.0 specification - Netscape Communications - November 18,

1996 - ftp://ftp.netscape.com/pub/review/ssl-spec.tar.Z

[3] Internet X.509 Public Key Infrastructure (rfc2585) - R. Housley and P. Hoffman (Net-
work Working Group) - May 1999 - http://www.ietf.org/rfc/rfc2585.txt

[4] Domain Name System Structure and Delegation (rfc1591) - J. Postel (Network Working
Group) - March 1994 - http://www.ietf.org/rfc/rfc2585.txt

[6] Middleware, in A White paper on Cluster Computing, International Journal of High
Performance Computing - M.A. Baker and A. Apon - December 2000

[6] The Essence of Distributed Systems - Joel M.Chrichlow - Parson Education - 2000

[7] Introduction to the Analysis of the Data Encryption Standard - Wayne G. Barker -
Aegean Park Pr - 1 October, 1991

[8] Open Distributed Systems - Jon Crowcroft - UCL Press - 1996
[9] Insecure apps threaten firms - Madeline Bennett, December 2002 - IT Week
[10] Java Language Reference - Mark Grand - O’Reilly - 1997

[11] Apache Tomcat Project - The Apache Software Foundation -
http://jakarta.apache.org/tomcat/ [visited March 2003]

[12] The GNU Project - The Free Software Foundation - http://www.gnu.org/ [visited April
2003]

[13] GNU Autoconf. Automake, and Libtool - Gary V. Vsughan, Ben Elliston, Tom Tromey
and [an Lance Taylor - New Riders - 2000

95

BIBLIOGRAPHY 96

[14] Common Object Request Broker Architecture - OMG (Object Management Group) -
http://www.corba.org [visited April 2003]

[15] Micrososft .NET - The Microsoft Corporation - http://www.microsoft.com/net/ [visited
April 2003]

[16] Product Information for Visual C# .NET 2003 - The Microsoft Corporation -
http://msdn.microsoft.com/vesharp/productinfo/ [visited April 2003]

[17] .NET Product Framework - The Microsoft Corporation -
http://msdn.microsoft.com /netframework /productinfo/ [visited April 2003]

[18] The Open Source Definition - Bruce Perens (Open Source Initiative) -
http://www.opensource.org/docs/definition.php [Visited April 2003] - 1997

[19] Globus Heart Beat Monitor - The Globus Project - http://www-fp.globus.org/hbm/
[visited April 2003]

[20] Grid Secuirity Infrastructure - GSI Working Group -
http://www.gridforum.org/2_SEC/GSLhtm [Visited April 2003]

[21] Globus Heart Beat Monitor Specification - The Globus Project - http://www-
fp.globus.org/hbm /heartbeat_spec.html [visited April 2003]

[22] The NetLogger Methodology for High Performance Distributed Systems Perfor-
mance Analysis - Brian Tierney, William Johnston, Brian Crowley, Gary Hoo,
Chris Brooks, Dan Gunter (Lawrence Berkeley National Laboratory) - http://www-
didc.lbl.gov/NetLogger/NetLogger. HPDC.paper.ieee.pdf

[23] Netlogger Tool Kit - Lawrence Berkeley National Laboratory - http://www-
didc.1bl.gov/NetLogger /summary.html - [visited April 2003]

[24] UC Berkeley Millennium Project - University = Of California -
http://www.millennium.berkeley.edu/ [visited April 2003]

[25] The Ganglia Project - Matt Massie - http://ganglia.sourceforge.net/ [visited May 2003]

[26] Relational Grid Monitoring Architecture - WP3 (The DataGrid Project) -
http://hepunx.rl.ac.uk/edg/wp3/ [visited April 2003]

[27] The DataGrid Project - The DataGrid Working Group - http://eu-
datagrid.web.cern.ch/eu-datagrid/ [visited April 2003]

BIBLIOGRAPHY 97

[28] The RPM Package Manager (RPM) - R P Herrold fbo (RPM community) -
http://www.rpm.org/ [visited April 2003]

[29] Apache Ant - The Apache Software Foundation - http://ant.apache.org/ [visited April
2003]

[30] Grid Monitoring Prototype - Distributed Systems Group, Portsmouth University -
http://www.dsg.port.ac.uk/ [visited November 2002]

[31] JDBC Technology - Sun Microsystems - http://java.sun.com/products/jdbc/ [visited
April 2003]

[32] MySQL: The world’s most popular open source database - MySQL AB -
http://www.mysql.com/ [visited April 2003]

[33] Microsoft SQL Server - The Microsoft Corporation - http://www.microsoft.com/sql/
[visited April 2003]

[34] Oracle 9i Database - Oracle Corporation - http://www.oracle.com/ip/deploy /database/oracle9i/
[visited April 2003]

[35] PostgreSQL Database - PostgreSQL Inc - http://www.postgresqgl.org/ - [visited April
2003

[36] A Simple Network Management Protocol (SNMP) (rfc1157) - J. Case, M. Fedor, M.
Schoffstall, J. Davin (Network Working Group) - http://www.ietf.org/rfc/rfc1157.txt -
May 1990

[37] SNMP FAQ - Various - news://comp.protocols.snmp/ - 11 Jul 1999

[38] Hypertext Transfer Protocol — HTTP/1.1 (rfc2616) - Network Working Group -
http://www.ietf.org/rfc/rfc2616.txt - June 1999

[39] Frequently Asked Questions - Java Security - Sun Microsystems -
http://java.sun.com/sfaq/ [visited April 2003]

[40] Database Systems - Thomas Connolly, Carolyn Begg and Anne Strachan - Addison
Wesley - 1999

Appendix A

Product Map Database

A.1 SQL Definitions for the Product Map Database

A.1.1 Table structure for table ‘products®

CREATE TABLE products (
id int(11) NOT NULL auto_increment,
name text NOT NULL,
description text NOT NULL,
PRIMARY KEY (id),
UNIQUE KEY id (id),
KEY 1d_2 (id)
) TYPE=MyISAM;

A.1.2 Table Structure for Table ‘product_mappings*

CREATE TABLE product_mappings (
id int(11) NOT NULL auto_increment,
agent text NOT NULL,
productid int(11) NOT NULL default °0~,
oid text NOT NULL,
PRIMARY KEY (id),
KEY id (id)

) TYPE=MyISAM;

98

APPENDIX A. PRODUCT MAP DATABASE

99

A.2 Example Views of the Database

A.2.1 Data View from Table ‘products®

o ——t e +
| id | name | description |
Fom e e +
1	infoDescription	Name of the system
l 2	infoMemTotal	Total memory in the machine
3] testhNull	A product that is never available	
4]	infoUptime	Human readable uptime of machine
l 5] infoCpu	Name and speed of installed processor	
6	dataNumberProcesses	Number of processes running
7	dataNumberUsers	Number of users logged in
8	dataCpuUsage	The percentage of cpu time being used
9	dataEthOReceived	Number of kb received from ethO
o ——t o +

A.2.2 Data View Table ‘product_mappings*

o — - e —_——_— - Ry My RSy Sy Sy S +
| id | agent | productid | oid |
ot o —_ e +
1] procmon	1	/proc/version	
2	procmon	2	memtotal.sh
3] snmp	1] 1.3.6.1.2.1.1.1.0		
4	snmp	2] 1.3.6.1.2.1.25.2.2.0	
Il 5] snmp	3] 4.5.6.7.8.9.9		
6	procmon	4	uptime.sh
7	procmon	5] cpuinfo.sh	
8	snmp	6] 1.3.6.1.2.1.25.1.6.0	
I 9	snmp	7] 1.3.6.1.2.1.25.1.5.0	
10	procmon	8	data/cpuusage.dat
11	procmon	9	data/netusage_ethO.dat
Sy S o —_ e +

Appendix B

Universal Data Store Database

B.1 SQL Definitions for the Universal Data Store Database

B.1.1 Table Structure for Table ‘udd_index¢

CREATE TABLE rgma_index (
id bigint(20) NOT NULL auto_increment,
name text NOT NULL,
leasetime int(11) NOT NULL default 07,
PRIMARY KEY (id),
UNIQUE KEY 1id (id),
KEY i1d_2 (id)

) TYPE=MyISAM;

B.1.2 Table structure for table ‘udd_data‘

CREATE TABLE rgma_data (
id bigint(20) NOT NULL auto_increment,
lexpire bigint(14) default NULL,
indexlink bigint(20) NOT NULL default °0~,
datalink bigint(20) NOT NULL default ’0~,
data text NOT NULL,
PRIMARY KEY (id)

) TYPE=MyISAM;

100

APPENDIX B. UNIVERSAL DATA STORE DATABASE 101

B.2 Example Views of the Database

B.2.1 Data View from Table ‘udd_index*

+
I

+

| siteName

| siteServieturl
| nodeName

| nodelp

| localSiteName
| productName

| userName

| userPassword
+

B.2.2 Data View Table ‘udd_data‘

o S o o ey +

| id] lexpire

| 710 |
1775]1048676337137]
1772]1048676337493|
1773]1048676337353|
1774]1048676337222|
|771]1048676337600]
|770]1048676321789]
1768]1048676321724]
1769]1048557860396 |
1766]1051846246424 |

0O O D OO OO O OODNNNDNIERELREPR

| indexlink]datalink] data

JUniLan
| ParentsLan
| DSG

|https://unipingu.no-ip.com:8080/gridmo. .
| https://217.39.8.114:8080/gridmonitor..
| https://marge.dsg.port.ac.uk:8089/gri. .

JUniLan
|dataCpuUsage

| infoMemTotal

| infoUptime

| infoCpu

| infoDescription
]192.168.0.36
]192.168.0.102

| infoDescription
| infoDescription

APPENDIX B. UNIVERSAL DATA STORE DATABASE 102

765]1051846247006	6	753	dataNumberUsers
764]1051846246872	6	753	dataNumberProcesses
763]1048676288951	6	753	dataEthOReceived
762]1048676288832	6	753	dataCpuUsage
761]11048676288701	6	753	infoCpu
760]1048676288624	6	753	infoUptime
759]1051846246682	6	753	infoMemTotal
758]1051846246471	6	753	infoDescription
757]11051846247156	6	751	dataNumberUsers
756]1051846247003	6	751	dataNumberProcesses
755]1051846246792	6	751 JinfoMemTotal	
754]1051846246346	6	751	infoDescription
753]11051846255084	4	1]192.168.0.100	
752]11051846254436	4	1]192.168.0.103	
751]1051846255173] 4	1]192.168.0.32		
o —t——_ Fo—_—— Fo——_ g +

Appendix C

External Java Packages

C.1 External Java Packages

Several Java packages were used during the development of the artefact. The following table

describes their functionality an in what part of the software they were accessed from.

Name

Author

License

Description

com.oreilly.servlet
jakarta-tomcat-4.0.6
jeifs-0.7.3
mm.mysql-2.0.6.1

snmp-1.1

Jason Hunter
Apache Foundation
Michael B. Allen
Mark Matthews
Jonathan Sevy

Free non commercial use
Open Source
Open Source

Open Source

Open Source

Various HTTP classes

Java Servlet Engine

Samba (windows file and prin
Mysql JDBC driver

Low level SNMP communicat

Table C.1: External Java Packages

103

Appendix D

Source Code

D.1 gridclients.awt : AwtClient

import org.grid.client.awt.Monitorinterface;
public class AwtClient{
public static void main (String[] args){

MonitoriInterface thisClient = new MonitoriInterface('https://mrflibble.
uni.lan:8080");
thisClient._show();
}
}

D.2 gridclients.servlet : WeblInterface

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet_http.*;

import org.grid.client.MonitorConnection;

public class WeblInterface extends HttpServlet {

public void Init(){

System.setProperty("javax.net.ssl._keyStore", " /usr/java/tomcat/ .keystore');
System.setProperty("'javax.net.ssl.keyStorePassword", " redbull');
System.setProperty("'java.protocol .handler.pkgs",'javax.net.ssl");

104

APPENDIX D. SOURCE CODE 105

System.out.printIn("'Fiddled with cert system properties');
}
public void doGet(HttpServletRequest req, HttpServletResponse res) throws _
ServletException, I0Exception {
res.setContentType('"text/html'");
PrintWriter out = res.getWriter();
HttpSession session = req.getSession(true);
String userName = (String) session.getValue('userName');
String userPassword = (String) session.getValue(“'userPassword™);
printHead(out);
String siteName = req.getParameter('s"™);
String nodeName = req.getParameter(''n');
if(userPassword==nul 1){
String helpUser = ""';
if(userName!=nul1){
out.printIn('Authentication failure (check user _
and password)
");
helpUser = userName;
+
out.printIn('
<form action=\"_/Weblnterface\" method=\""POST\'"'>"");
out.printin(<table>");
out.printIn('<tr><td>User Name:</td><td><input type=\""text\" _
name=\"un\" size=\"20\" value=\""" + helpUser + "\"> (Example _
<i>dave@BigComputingSite</i>)</td></tr>\n");
out.printin('<tr><td>Password:</td><td><input type=\"password\" name=\""_
up\" size=\"20\""></td></tr>\n"");
out.printin('</table>");
out.printIn('<input type=\"submit\" name=\""I\"" value=\""Log On\"'>"");
out.printIn(’'</form>");
}
else{
MonitorConnection monitorServlet;
try {
monitorServlet = new MonitorConnection(*'https://localhost:8080/
gridmonitor/Monitor", userName, userPassword);
by
catch(Java.net.ConnectException e){
out.printIn("Can’t connect to Monitor Servlet");
return;

APPENDIX D. SOURCE CODE 106

by
if(siteName==nul1){
// display the site list
Vector sites = monitorServlet.getSiteList();
for(int pnt = 0; pnt < sites.size(); pnt++){
String site = (String) sites.get(pnt);
out.printIn(");

");
out.printin(site + "
");
out.printIn('
");
}
by

else{
if(nodeName==nul1){
// display the node list for this site
out.printIn(''" + siteName + " : : Node List

");
Vector nodes = monitorServlet.getNodeList(siteName);
out.printin(<table width=\"100%\"">"");
int cols = 0;
for(int cnt = 0; cnt < nodes.size(); cnt++){
String node = (String) nodes.get(cnt);
cols++;
if(cols==1){
out.printIn('<tr>");
by
out.printIn('<td><a href=\"_./Weblnterface?s=" + siteName + "&n=""_
+ node + \''>");
out.printIn(’_

");
out.printin(node + "
");
out.printIn(</td>");
if(cols==4){
out.printIn(</tr>");
cols = 0;
}
}
out.printin('</table>");

}

else{

APPENDIX D. SOURCE CODE 107

// display the products and their vaules for this node

out.printIn(" + siteName + " : " + nodeName + " : Product_
List

");

Vector products = monitorServlet.getProductList(siteName,nodeName);

out.printin('<table width=\""100%\"">"");

int row = 0;

for(int pcnt = 0; pcnt < products.size(); pcnt++){

row++;
iT(row==2){
out.printIn('<tr><td>");
row = 0O;
by
else{
out.printIn('<tr bgcolor=\"#EDEDED\"'><td>"");
}

String product = (String) products.get(pcnt);
String productValue = monitorServlet.getProductvValue(siteName,
nodeName, product) ;
out.printin(product + "</td><td><i>" + productvValue + "</i>");
out.printin('</td></tr>");
+
out.printin('</table>");
}
by
}
printFoot(out);

}

private void printNodes(PrintWriter out, String siteName){
}
private void printHead(PrintWriter out){
out.printin('<html>");
out.printin('<head>"");
out.printIn("<title>Distributed Grid Resource Monitor</title>");
out.printIn(<link rel=\"'stylesheet\" href=\"/gridinterface/main.css\" _
type=\""text/css\''>");
out.printIn(’’</head>");
out.printin('<body bgcolor=\"ddeldd\" text=\""#000000\"">");
out.printIn('<img border=\"0\" width=\"791\" height=\""96\"" src=\""/_
gridinterface/header.png\">
");

APPENDIX D. SOURCE CODE 108

out.printIn(<table width=\"791\" height=\"600\" border=\"1\"" _
cellpadding=\"0\" cellspacing=\""0\"" bgcolor=\"white\" bordecolor=_
\"black\"><tr><td>");
out.printin("<table width=\""100%\"" height=\""600\""><tr><td bgcolor=_
"#eeeeee\" width=\""134\"" align=\"left\" valign=\""top\'">");
out.printin(<table width=\"132\"" bgcolor=\"#333333\"" cellpadding=\""1\""_
cellspacing=\"0\"" border=\""0\""><tr><td><table width=\""132\"" _
border=\""0\"" cellpadding=\"0\" cellspacing=\""0\"" bgcolor=_
\"#678Fe3\""><tr><td width=\"132\" align=\""center\" valign=_
\"top\'">"");
out.printIn(<font color=\""_
white\">Html Interface");
out.printin("</td></tr></table></td></tr></table>");
out.printin(<table height=\"2\""><tr><td></td></tr></table>");
out.printin(<table width=\"132\"" bgcolor=\"#333333\"" cellpadding=\""1\"_
cellspacing=\"0\" border=\"0\""><tr><td><table width=\""132\"" _
\"#678Fe3\""><tr><td width=\""132\"" align=\"'center\" valign=\""top\"'>");
out.printIn(<font _
color=\"white\'">Applet Interface");
out.printin("</td></tr></table></td></tr></table>");
out.printin(<table height=\"2\""><tr><td></td></tr></table>");
out.printin(<table width=\"132\"" bgcolor=\"#333333\"" cellpadding=\""1\"_
cellspacing=\"0\" border=\"0\""><tr><td><table width=\""132\"
#678Fe3\""><tr><td width=\"132\"" align=\"center\" valign=\""top\">"");
out.printIn(<a href=\"http://homer.dsg.port.ac.uk/ " matgrove/index.php_
\"">Project Homepage"");
out.printin('</td></tr></table></td></tr></table>");
out.printIn(</td><td align=\"left\" valign=\""top\'">");
+
private void printFoot(PrintWriter out){
out.printin('</td></tr></table>");
out.printin('</td></tr></table>");
out.printIn(Mat Grove_
/font>"");
out.printIn(</body>");
out.printIn(’</html>");
+
public void doPost(HttpServletRequest req, HttpServletResponse res) _
throws ServletException, I0Exception {

APPENDIX D. SOURCE CODE 109

// we only use post for the log on

res.setContentType(""text/html'");

PrintWriter out = res.getWriter();

String userName = req.getParameter(*'un');

String userPassword = req.getParameter('up');

MonitorConnection monitorServlet;

try {
monitorServlet = new MonitorConnection("'https://localhost:8080/

gridmonitor/Monitor™, userName, userPassword);

}

catch(Java.net._ConnectException e){
out.printIn(**Can’t connect to Monitor Servlet™);
return;

}

boolean authOk = monitorServlet._getAuthenticated();

HttpSession session = reg.getSession(true);

if(TauthOk){
if(session.getValue('userName™) I=nul1){

session.removeValue("'userName');

by
session.putValue('userName', userName);
doGet(req, res);

}

else{
session.putValue('userName', userName);
session.putValue('userPassword", userPassword);
doGet(req, res);

}

+
}

D.3 gridclients.applet : AwtAppletClient

import org.grid.client.awt.Monitorinterface;
import java.applet.*;
public class AwtAppletClient extends Applet {
public void init(){

String serverBase;

APPENDIX D. SOURCE CODE 110

serverBase = "http://" + getCodeBase().getHost()+ ":" + getCodeBase()._
getPort();

MonitoriInterface thisClient = new MonitoriInterface(serverBase);

thisClient._show();

}
}

D.4 gridclients.cli : Cli

import java.io.*;
import java.util.*;
import javax.servlet.*;
//import javax.servlet_http.*;
//import org.grid.client.MonitorConnection;
import org.grid.mds.MdsGridSecurity;
public class Cli{
public static void main (String[] args){
System.out.printIn(""Testing security');
String u = "mat@UniLan";
String p = "b";
boolean b = MdsGridSecurity.authenticate('UniLan',u,p);
String s = "stuff\n"';
+
}
/**
public static void main (String[] args){
MonitorConnection monitorServlet;
try {
monitorServlet = new MonitorConnection(''http://localhost:8080/
gridmonitor/Monitor'™);
}
catch(Java.net.ConnectException e){
out("'Can’t connect to Monitor Servilet'",0);
return;
3
Vector sites = monitorServlet.getSiteList();
for(int pnt = 0; pnt < sites.size(); pnt++){
String site = (String) sites.get(pnt);

APPENDIX D. SOURCE CODE 111

out(site,0);
Vector nodes = monitorServlet.getNodeList(site);
for(int cnt = 0; cnt < nodes.size(); cnt++){
String node = (String) nodes.get(cnt);
out(node, 2);
//if(site.equals(’'UniLan'™)){
Vector products = monitorServlet.getProductList(site,node);
for(int pcnt = 0; pcnt < products.size(); pcnt++){
String product = (String) products.get(pcnt);
String productvValue = "";
//if(reqg.getParameter(""withproducts™) '=nul1){
// productValue = monitorServlet.getProductvValue(site,node,

product);
//}
out(product,4);
by
//}
}
}
by
private static void out(String v, int indent){
String it = "";
for(int i=1;i<=indent;i++){
it =it + """
}
System.out.printIn(it + " - " + Vv);
by
}
**/

D.5 gridmonitor : MonitorServlet

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet._http.*;
import org.grid.mds.MdsGridData;
import org.grid.monitor.*;

APPENDIX D. SOURCE CODE 112

import org.grid.security.SecurityManager;
public class MonitorServlet extends HttpServlet {
private String localSiteName;
public void init(Q){
localSiteName = MdsGridData.getLocalSiteName();
new MonitorScan(''192.168.0",localSiteName);
}
public void doGet(HttpServletRequest req, HttpServletResponse res) throws Serv
// EVERY QUERY needs a username and password, all users must authenticate be
// start to talk to this site - regardless of what they want to do here
String userName = req.getParameter('userName™);
String userPassword = req.getParameter('userPassword");
boolean authOk = SecurityManager.authenticate(localSiteName, userName, _
userPassword) ;
if(TauthOk){
PrintWriter out = res.getWriter();
out_printIn("Error: 403");
return;
}
if(req.getParameter('getLocalSiteName') I=nul1){
res.getWriter().printIn(localSiteName);
return;
}
if(req.getParameter('getNodeList'™) I=nul){
String siteName=req.getParameter(‘'siteName');
printVector(res.getWriter(), MdsGridData.getNodeList(userName, _
userPassword, localSiteName,siteName));
return;
}
if(req.-getParameter('getSiteList™) I=null){
printVector(res.getWriter(), MdsGridData.getSiteList());
return;
}
if(req.getParameter('getProductList™)I=null){
String siteName=req.getParameter(‘'siteName');
String nodeName=req.getParameter(‘'nodeName");
printVector(res.getWriter(), MdsGridData.getProductList(userName,
userPassword, localSiteName,siteName,nodeName));
return;

APPENDIX D. SOURCE CODE 113

}
if(reqg.getParameter("'getProduct™) '=nul 1){

String siteName=req.getParameter(‘'siteName');
String nodeName=req.getParameter (‘'nodeName");
String productName=req.getParameter("'productName');
res.getWriter().printIn(MdsGridData.getProduct(userName, userPassword,
localSiteName, siteName,nodeName,productName));
return;
}
PrintWriter out = res.getWriter();
out.printIn("Fell through gets™);
+
private void printVector(PrintWriter out, Vector stringData){
for(int cnt = 0; cnt < stringData.size(); cnt++){
out.printin(stringData.get(cnt));

}

+
public void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, I0Exception {
doGet(req, res);
+
}

D.6 org.grid.support : Debug

package org.grid.support;
import java.io.*;
public class Debug{

static int debugOn = 1;

static boolean hideSQL = true;
public static void out(String msg){
if(debugOn == 1){

System.out.printIn(’'Debug: " + msg);

}

+
public static void log(boolean local, String type, String msg){

if(type.equals('SQL™) && hideSQL){
return;

APPENDIX D. SOURCE CODE

114

String logOut = "Log: "
if(local){

logOut = logOut + "local,";
}
else{

logOut logOut + "'remote,";

}
logOut = logOut + type + "," + msg;
System.out.printin(logOut);

D.7 org.grid.support : StringPair

package org.grid.support;
import java.io.*;
public class StringPair{
public String name;
public String value;
public StringPair(String sl1, String s2){
name=s1;
value=s2;
by
public StringPair(String sl1){
name=s1;

APPENDIX D. SOURCE CODE 115

D.8 org.grid.support : IndexPair

package org.grid.support;
import java.io.*;
public class IndexPair{
public int id;
public String value;
public IndexPair(int i, String s2){
id=i;
value=s2;
by
public IndexPair(){
1d=0;

D.9 org.grid.mds.rgmb : GridSecurity

package org.grid.mds.rgmb;
import org.grid.mds.GridSecurityModule;
import java.util.*;
import org.grid.support.*;
public class GridSecurity implements GridSecurityModule{
private static Stack addPairToStack(Stack theStack, String paramOne, String pa
String params[];
params = new String[2];
params[O]=paramOne;
params[1]=paramTwo;
theStack.push(params);
return theStack;

}
public boolean authenticate(String siteName, String userName, String _
userPassword){
Debug.out("'RGMB security module is going to try to authenticate _
someone™);
Debug.out('Sitename: " + siteName);

Debug.out("'Username: " + userName);

APPENDIX D. SOURCE CODE 116

Debug.out('Sitename: " + siteName);
Stack dataStack = new Stack();
dataStack = addPairToStack(dataStack, "‘userPassword', ');
dataStack = addPairToStack(dataStack, "userName', userName);
dataStack = addPairToStack(dataStack, *siteName', siteName);
Vector retrievedPasswordList;
String retrievedPassword = "'';
Vector leaseWithData = RgmbQuery.recursiveGet(dataStack,'");
if('leaseWithData. isEmpty()){
String values[] = (String[]) leaseWithData.get(0);
retrievedPassword = values[1];
}
if(userPassword.equals(retrievedPassword)){
Debug.out(*'rgmb security module thinks password is valid);
return true;

}

else{

Debug.out(*'rgmb security module thinks password is wrong');
return false;

}

}
}

D.10 org.grid.mds.rgmb : RgmbQuery

package org.grid.mds.rgmb;
import java.util.*;
import java.net.*;
import java.io.*;
import java.sql.*;
import org.grid.support.*;
public class RgmbQuery{
// create a lease expire time given the name of the data
private static String generatelLease(String dataName){
// for now we blindly set lease times for 10 minutes
long leaseMinutes = 10;
long lease = System.currentTimeMillis() + (leaseMinutes * 1000 * 60);
String leaseExpires = String.valueOf(lease);

APPENDIX D. SOURCE CODE 117

return leaseExpires;

}
public static Vector recursiveGet(Stack theStack, String lastDataLinkld){

String values[] = (String[]) theStack.pop(Q);
//System.out.printIn(*vall: *" + values[O0] + "~ Vval2: *" + values[1l] + _
"7 link id: " + lastDataLinkld + "”');
if(1theStack.empty()){
Vector keyAndLease = RgmbQuery.getKey(values[0], values[1l], _
lastDatalLinkld);
if(lkeyAndLease. iseEmpty()){
lastDataLinkld = (String) keyAndLease.get(0);
return recursiveGet(theStack, lastDataLinkld);

}

else{
// wasnt found
Debug.out("'recursiveGet Couldn’t get a key');
return new Vector();

}
}

else{
return RgmbQuery.getValues(values[0], lastDataLinkld);

}

+
public static void recursiveSet(Stack theStack, String lastDatalLinkld, _

String dataValue){
String values[] = (String[]) theStack.pop();
//System.out._printIn(C*vall: *" + values[0] + "~ Val2: *" + values[1l] + _
"7 link id: ”" + lastDataLinkld + "”');
if(1theStack.empty()){
Vector keyAndLease = RgmbQuery.getKey(values[0], values[1l], _
lastDatalLinkld);
if('keyAndLease. isEmpty()){
lastDataLinkld = (String) keyAndLease.get(0);
recursiveSet(theStack, lastDataLinkld, datavalue);
+
else{
// wasnt found
Debug.out('recursiveSet Couldn’t get a key');

}

APPENDIX D. SOURCE CODE 118

}

else{
Vector key = RgmbQuery.getKey(values[0], datavalue, lastDataLinkld);
if(key.isEmpty()){
// the node has never been cached so we need to create it
RgmbQuery.createValue(values[0], dataValue, lastDataLinkld);
}
else{
//Debug.out('Got the ID of: " + nodeName + " in site: " + siteName _
+ " and It is: " + (String) key.get(0));
String parentld = (String) key.get(0);
// the value already exists so we do an update
RgmbQuery.setValue(values[0], datavalue, parentid);
}
//return RgmbQuery.setValue(values[0],datavalue, lastDataLinkld);
}
}

// update a record when we know its ID
public static void setValue(String dataName, String data, String datald){
String leaseExpire = generatelLease(dataName);
String SQL = "UPDATE rgma_data SET rgma data.data="" + data + "7, _
lexpire="" + leaseExpire + 7" +
" WHERE rgma_data.id="" + datald + "*";
try{
DQ(SQL);
}
catch (Exception e) {
}
}

// create a new record

public static void createValue(String dataName, String data, String _
dataLink){
String leaseExpire

try{
String indexLink

generatelLease(dataName);

DQS(*'SELECT rgma_index.id FROM rgma_index WHERE _
rgma_index.name=""" + dataName + '"*'");
String SQL = " INSERT INTO “rgma _data“ (“id“, “lexpire“, “indexlink®, _
“datalink®, “data“)" +
" VALUES (°7, *" + leaseExpire + "7, ”" + indexLink + _

APPENDIX D. SOURCE CODE 119

"7, 7" + dataLink + "7, *" + data + ""7)"";

DQ(SQL) ;
}
catch (Exception e) {
}
}

// returns the Id and the lease time of one object in the dbase
public static Vector getKey(String dataName, String data, String parentld){
String SQL = "'select rgma_data.id, rgma data.lexpire from rgma_data,
rgma_index where rgma_data.indexlink=rgma_index.id" +
" AND rgma_index.name=""" + dataName + "> AND rgma data.
data="" + data + "7";

if(Iparentld.equals(™)){
SQL = SQL + " AND rgma_data.datalink="" + parentld + "”";

}

try{
return DQRS(SQL);

}

catch (Exception e) {
return new Vector();

}
}

// returns one value given the parent id and the dataname (type)
public static String getValue(String dataName, String parentld){
String SQL = "select rgma_data.data from rgma data,rgma_ index where _
rgma_data. indexlink=rgma_index.id" +
" AND rgma_index.name=""" + dataName + "7 AND rgma_data._
datalink=""" + parentld + "”';

try{
return DQS(SQL);

}
catch (Exception e) {

return :

}
}

// returns a list of value given the parent id and the dataname (type)
public static Vector getValues(String dataName, String parentld){
String SQL = "select rgma_data.lexpire, rgma _data.data from _
rgma_data, rgma_index where rgma_data.indexlink=rgma_index.id" +

APPENDIX D. SOURCE CODE 120

" AND rgma_index.name=""" + dataName + '’ AND rgma_data.
datalink=""" + parentld + "";
try{
return DQR(SQL);
3
catch (Exception e) {
return new Vector();

}

by
// load the sqgl driver

private static void loadDriver(){
try{
Class.forName(*'org.gjt.-mm.mysqgl .Driver'™) _newlnstance();
}
catch (Exception e) {
Debug.out("'org.grid.mds.rgmb.Query.setValue()');
Debug.out(*'Couldn’t load MYSQL driver'™);
System.exit(l);
3
+

// execute an sgl statement and return the result set
private static ResultSet executeSQL(String SQL) throws java.sgl._
SQLException{
try{
// load the sqgl driver
loadDriver();
// Create a Connection and a Statement
Connection conn =DriverManager.getConnection(*"'jdbc:mysqgl://_
127.0.0.1:3306/project', "snmp', "java');
//System.out.printIn(’* New SQL is going to run: " + SQL);
Debug.log(true, "SQL"™, SQL);
Statement stmt = conn.createStatement();
// execute the query
ResultSet resultSet = stmt.executeQuery (SQL);
//System.out.printIn(’* New SQL executed ok');
return resultSet;
}
catch (Exception e) {
System.out.printIn(""New SQL failed™);

APPENDIX D. SOURCE CODE 121

throw new java.sql.SQLException();

}
}

// execute sgl and return 1 string value
private static String DQS(String SQL) throws java.sqgl.SQLException{
try{
ResultSet resultSet = executeSQL(SQL);
resultSet.next();
return resultSet.getString(l);
}
catch (Exception e) {
throw new java.sql.SQLException();

}
}

// execute sql and return a list of string values
private static Vector DQ(String SQL) throws java.sql.SQLException{
try{
ResultSet resultSet = executeSQL(SQL);
Vector data = new Vector();
while(IresultSet.isLast()){
resultSet.next();
data.add(resultSet.getString(1));
+

return data;
}
catch (Exception e) {
throw new java.sql.SQLException();

}
}

// execute sql and return a list of rows with 2 values each
private static Vector DQR(String SQL) throws java.sqgl.SQLException{
try{
ResultSet resultSet = executeSQL(SQL);
Vector data = new Vector();
String pair[];
while(TresultSet.isLast()){
resultSet.next();
pair = new String[2];
pair[O0]=resultSet.getString(1l);

APPENDIX D. SOURCE CODE 122

pair[1]=resultSet.getString(2);
//Debug.out('Hoiked " + pair[0] +
data.add(pair);

", + pair[1);

}

return data;
}
catch (Exception e) {
throw new java.sql.SQLException();
}
by
// execute sql and return 1 row of values
private static Vector DQRS(String SQL) throws java.sqgl.SQLException{
try{
ResultSet resultSet = executeSQL(SQL);
Vector data = new Vector();
resultSet.next();
data.add(resultSet.getString(1));
data.add(resultSet.getString(2));
return data;
}
catch (Exception e) {
throw new java.sql.SQLException();
}
by
}

D.11 org.grid.mds : Mds

package org.grid.mds;
import java.util.*;
import org.grid.mds.rgmb.RgmbQuery;
import org.grid.client.MonitorConnection;
import org.grid.support.*;
public class Mds{
public void Mds(){
+
public static boolean checklLease(Stack commands){
Vector results = RgmbQuery.recursiveGet(commands,™");

APPENDIX D. SOURCE CODE 123

if('results.isEmpty()){
String[] firstvalue = (String[]) results.get(0);
String lease = firstvalue[0];
if('leaseExpired(lease)){
//Debug.log(true, "lease”™, "hit");
return true;
}
else{
//Debug.log(true, "lease"™, "miss');
return false;
by
}
else{
// there were no nodes in the cache which 1 suppose means the lease
// is very toasted :)
Debug.log(true, "lease", "no values');
return false;
}
by

private static boolean leaseExpired(String lease){
long IExpire = Long.parseLong(lease);
// a lease set to -1 can’t expire
if((1IExpire > System.currentTimeMillis()) || IExpire < 0){
// lease hasnt expired
//Debug.out('lease hasnt expired™);
return false;
}
else{
// lease has expired
//Debug.out(lease has expired™);
return true;

}
}
public static Stack addPairToStack(Stack theStack, String paramOne, _
String paramTwo){
String params[];
params = new String[2];
params[O]=paramOne;
params[1]=paramTwo;

APPENDIX D. SOURCE CODE 124

theStack.push(params);
return theStack;
}
private static Vector striplLeaseData(Vector leaseWithData){
Vector stripped = new Vector();
for(int cnt = 0; cnt < leaseWithData.size(); cnt++){
String values[] = (String[]) leaseWithData.get(cnt);
stripped.add(values[1]);
}
return stripped;
}
public static Vector getFromCache(Stack commands){
//Debug.out(''getFromCache™);
return striplLeaseData(RgmbQuery.recursiveGet(commands,'));
}
public static void setCache(Stack commands, String dataValue){
RgmbQuery.recursiveSet(commands, "', datavalue);
}
}

D.12 org.grid.mds : MdsGridSecurity

package org.grid.mds;
import org.grid.mds.rgmb.*;
import org.grid.mds.local.*;
import java.util.*;
import org.grid.support.*;
import java.lang.reflect.*;
public class MdsGridSecurity{
/**
static String module = "rgmb";
private GridSecurityModule loadAgent(String className, String _
paramStringl, String paramString2) throws Exception{
try{
// get reference to the class
Class classRef = Class.forName(className);
Constructor constr = classRef.getConstructor(null);
GridSecurityModule securityModule = (GridSecurityModule) _

APPENDIX D. SOURCE CODE 125

constr._.newlnstance(null);
return securityModule;

}

catch(Java. lang.ClassNotFoundException e){
Debug.out(*'Couldn’t dynamically load class: " + className);
throw new Exception('"");

}

catch(Exception e){
throw new Exception('"");

}
by
**/
public static boolean authenticate(String localSiteName, String _
userNameSitePair, String userPassword){
// usernames take the form of user@site
// but they are stored as user In the home mds with site as the
// parent node
StringTokenizer st = new StringTokenizer(userNameSitePair, "0');
int numTokes = st.countTokens();
if(numTokes 1= 2){
Debug.out("THIS IS A FUCKUP - the user@site pair is munged (look _
for the @): " + userNameSitePair);
return false;
}
String userName
String siteName

st.nextToken();
st.nextToken();
org.grid.mds. jcifs.GridSecurity gs = new org.grid.mds. jcifs.

GridSecurity(Q;
GridSecurityModule gsm = (GridSecurityModule) gs;
Debug.out("'Username: " + userName);
Debug.out(''Sitename: " + siteName);

Stack dataStack = new Stack();

dataStack = Mds.addPairToStack(dataStack, '‘userPassword"™, '"");
dataStack = Mds.addPairToStack(dataStack, '"‘userName', userName);
dataStack = Mds.addPairToStack(dataStack, *siteName'™, siteName);
Vector retrievedPasswordList;

boolean authenticatedOk = false;

if(Mds.checklLease((Stack)dataStack.clone())){

APPENDIX D. SOURCE CODE 126

Debug.out("'Good lease');
retrievedPasswordList = Mds.getFromCache(dataStack);
if(lretrievedPasswordList.isempty()){
String retrievedPassword = (String) retrievedPasswordList.get(0);
//Debug.out("retrieved password: " + retrievedPassword);
if(userPassword.equals(retrievedPassword)){
Debug.out("'Using cached password - password is valid);
authenticatedOk = true;

}
}
}

else{

if(siteName.equals(localSiteName)){
// its a local user so use the GSM for this site
Debug.out('Using local gsm to get password');
authenticatedOk = gsm.authenticate(siteName, userName, userPassword);

by

else{
// this user isn’t one of ours, we need to do a remote password get
// from their site, this data will be cached in the standard way
Debug.out('Going to do a remote fetch for the password');
//authenticatedOk = remote.authenticate(siteName, userName, _

userPassword);

by

if(authenticatedOk){
// password was ok so cache it
cacheUserNameAndPassword(siteName, userName, userPassword);

by

}
return authenticatedOk;

by

private static void cacheUserNameAndPassword(String siteName, String _
userName, String userPassword){
Stack dataStack = new Stack();
dataStack = Mds.addPairToStack(dataStack, '"userName', '"');
dataStack = Mds.addPairToStack(dataStack, *siteName'™, siteName);
Mds.setCache((Stack)dataStack, userName);
dataStack = Mds.addPairToStack(dataStack, '‘userPassword™, '"");
dataStack = Mds.addPairToStack(dataStack, '"‘userName', userName);

APPENDIX D. SOURCE CODE 127

dataStack = Mds.addPairToStack(dataStack, *siteName'™, siteName);
Mds.setCache((Stack)dataStack, userPassword);

}
}

D.13 org.grid.mds : MdsGridData

package org.grid.mds;
import java.util.*;
import org.grid.mds.rgmb.RgmbQuery;
import org.grid.client.MonitorConnection;
import org.grid.support.*;
import org.grid.monitor._*;
public class MdsGridData{
public void MdsGridData(){
+
public static String getServletUrl(String siteName){
Vector key = RgmbQuery.getKey(“'siteName', siteName, "'");
String siteld = (String) key.get(0);
return RgmbQuery.getValue(''siteServietUrl",siteld);
+
public static String getLocalSiteName(){
return RgmbQuery.getValue(''localSiteName', "0");
+
public static Vector getSiteList(){
Stack dataStack = new Stack();
dataStack = Mds.addPairToStack(dataStack, ''siteName', '"');
return Mds.getFromCache(dataStack);
+
public static Vector getNodeList(String userName, String userPassword, _
String localSiteName, String siteName){
Stack dataStack = new Stack();
dataStack = Mds.addPairToStack(dataStack, ''nodelp'™, "™");
dataStack = Mds.addPairToStack(dataStack, "siteName', siteName);
Vector cachedNodeList = Mds.getFromCache((Stack)dataStack.clone());
if(Mds.checklLease((Stack)dataStack.clone())){
// lease is still good
Debug.log(true, "‘cache', "lease hit for getNodeList(" + siteName + ')');

APPENDIX D. SOURCE CODE 128

return cachedNodeList;

}

else{
Debug.log(true, '"cache", "lease miss for getNodeList(" + siteName + _

")");
if(localSiteName.equals(siteName)){
// this is the local site
new MonitorScan('192.168.0", localSiteName);
return cachedNodeList;
}

else{
// we must refetch the info as the lease is up
// or the data isnt cached
try {
String siteUrl=getServietUrl(siteName);
MonitorConnection monitorServlet = new MonitorConnection(siteUrl,_
userName, userPassword);

Vector nodelList = monitorServlet.getNodeList(siteName);
Debug.log(false, "'get", "getNodeList(" + siteName + ") " + siteUrl);
setNodeList(siteName, nodelList);
return nodelList;

}
catch(Java.net.ConnectException e){
System.out.printIn("'remote mds call failed for getNodeList');

e.printStackTrace(System.out);
}
return new Vector();
by
}
by

public static Vector getProductList(String userName, String userPassword,
String localSiteName, String siteName, String nodelp){
Stack dataStack = new Stack();
dataStack = Mds.addPairToStack(dataStack, "productName"™, "');
dataStack = Mds.addPairToStack(dataStack, "nodelp’, nodelp);
dataStack = Mds.addPairToStack(dataStack, *siteName'™, siteName);
Vector productList;
if(Mds.checkLease((Stack)dataStack.clone())){
// lease is still good

APPENDIX D. SOURCE CODE 129

Debug.log(true, '"cache"™, "lease hit for getProductList(" + siteName +_
" + nodelp + ™)');
productList = Mds.getFromCache(dataStack);
}
else{
Debug.log(true, "cache™, "lease miss for getProductList(" + siteName _
+ "," + nodelp + ")");
MonitorManager currentMonitor = new MonitorManager(userName, _
userPassword, localSiteName, siteName, nodelp);
productList = currentMonitor.getProductList();

}

return productList;
+
public static String getProduct(String userName, String userPassword,
String localSiteName, String siteName, String nodelp, String _
productName){
MonitorManager currentMonitor = new MonitorManager(userName, _
userPassword, localSiteName, siteName, nodelp);
return currentMonitor.getValue(productName);
by
public static void setNodeList(String siteName, Vector nodelList){
Stack dataStack = new Stack();
dataStack = Mds.addPairToStack(dataStack, ''nodelp™™, '"");
dataStack = Mds.addPairToStack(dataStack, *siteName'™, siteName);
for(int cnt = 0; cnt < nodeList.size(); cnt++){
String nodelp = (String) nodeList.get(cnt);
Mds.setCache((Stack)dataStack.clone(), nodelp);

}
}

public static void setProductList(String siteName, String nodelp, _
Vector productList){
Stack dataStack = new Stack();
dataStack Mds.addPairToStack(dataStack, '‘productName'™, "'");
dataStack = Mds.addPairToStack(dataStack, ''nodelp', nodelp);
dataStack = Mds.addPairToStack(dataStack, *siteName'™, siteName);
for(int cnt = 0; cnt < productList.size(); cnt++){
String productName = (String) productList.get(cnt);
Mds.setCache((Stack)dataStack.clone(), productName);

}

APPENDIX D. SOURCE CODE

130

D.14 org.grid.monitor : MonitorScan

package org.grid.monitor;
import org.grid.mds.MdsGridData;
import java.util._Vector;
import org.grid.support.*;
public class MonitorScan implements Runnable{
private String localSiteName;
private Vector nodeList = new Vector();
private Vector scanlList;
public MonitorScan(String subnet,String siteName){
scanList = new Vector();
for(int cnt=1; cnt<255; cnt++){
String host=subnet + "." + String.valueOf(cnt);
scanList.add(host);
}
localSiteName = siteName;
Thread scan = new Thread(this);
scan.start();
by
public MonitorScan(Vector ipList, String siteName){
scanList = ipList;
localSiteName = siteName;
Thread scan = new Thread(this);
scan.start();
}
public void run() {
if(scanList==nul1){
Debug.out(*'Scanner was asked to scan nothing!");
return;

}
for(int cnt = 0; cnt < scanList.size(); cnt++){
String host = (String) scanList.get(cnt);
try{
Scanner sc = new Scanner(localSiteName,host,this);

APPENDIX D. SOURCE CODE 131

by
catch(Java.lang.OutOfMemoryError e){

// maxed out the heap????
by

}
MdsGridData.setNodeList(localSiteName,nodelList);

}

public void hostAlive(String hostlp, String hostName) {
Debug.log(true, "monitor'"™, hostlp + " is monitorable');
nodeList.add(hostlp);

}

}

D.15 org.grid.monitor.agent : AgentException

package org.grid.monitor.agent;

public class AgentException extends Exception{
public AgentException(String message){}

}

D.16 org.grid.monitor : Scanner

package org.grid.monitor;
import java.net.*;
import java.lang.Thread;
import java.util._Vector;
public class Scanner implements Runnable{
String hostlpString;
MonitorScan parent;
String localSiteName;
public Scanner(String localSite, String hostlp,MonitorScan p) {
hostlpString = hostlp;
localSiteName = localSite;
parent = p;
Thread scanner = new Thread(this);
scanner.start();

APPENDIX D. SOURCE CODE 132

public void run(Q) {
InetAddress host = null;

try{
host = InetAddress.getByName(hostlpString);

}

catch(Java.net._UnknownHostException e){
return;

}

MonitorManager monitor = new MonitorManager('internal', "boogie",
localSiteName, localSiteName,hostlpString);

if(monitor.getProductList().size()>0){
String hostName = host.getHostName();
parent.hostAlive(hostlpString,hostName);

}

}
}

D.17 org.grid.monitor : MonitorManager

package org.grid.monitor;
import org.grid.support.*;
import java.util.*;
import java.io.*;
import org.grid.monitor.agent.*;
import org.grid.plugins.PluginManager;
import org.grid.plugins.modules.*;
import org.grid.mds.MdsGridData;
public class MonitorManager{
private Vector agentList;
private Vector productList;
private String localSiteName;
private String monitoredSiteName = "this hasnt been set to shit yet";
private String monitoredNodeName;
private String userName;
private String userPassword;
public MonitorManager(String user, String password, String localSite, _
String site, String node){
userName = user;

APPENDIX D. SOURCE CODE 133

userPassword = password;
localSiteName = localSite;
monitoredSiteName = site;
monitoredNodeName = node;
productList = consolidateProductList(site,node);
by
public String getValue(String productName){
for(int cnt = 0; cnt < productList.size(); cnt++){
IndexPair thisProduct = (IndexPair) productList.get(cnt);
if(thisProduct.value.equals(productName)){
MonitorDef tmpAgent = (MonitorDef) agentList.get(thisProduct.id);
//Debug.out("--Calling " + tmpAgent.clientAgent() +" to get " + _
productName);
return tmpAgent.get(productName);

}

}
//Debug.out("'Fell through looking for " + productName);

return "'';
}
public Vector getProductList(){
Vector productNames = new Vector();
for(int cnt = 0; cnt < productList.size(); cnt++){
IndexPair thisProduct = (IndexPair) productList.get(cnt);
productNames.add(thisProduct.value);
}
MdsGridData.setProductList(monitoredSiteName, monitoredNodeName, _
productNames);
return productNames;
by
public int getNumberProducts(){
return productList.size();
by
private Vector consolidateProductList(String site, String host){
agentList = new Vector();
Vector combinedProducts = new Vector();
Vector addedProducts = new Vector();
String filter;
if(site.equals(localSiteName)){
filter = "lremote";

APPENDIX D. SOURCE CODE 134

}

else{
filter = "=remote';
}
String[] params = new String[4];
params[0] = userName;

params[1] = userPassword;

params[2] = site;

params[3] = host;

agentList = PluginManager.loadPlugins("'Monitor™, Ffilter, params);

for(int cnt = 0; cnt < agentList.size(); cnt++){
MonitorDef thisAgent = (MonitorDef) agentList.get(cnt);
//Debug.out('vector has: " + thisAgent.clientAgent());
Vector pi = productList(cnt, thisAgent, host);
for(int i = 0; 1 < pi.size(); i++){
IndexPair p = (IndexPair) pi.get(i);
//Debug.out("'Report: " + p.name + " has " + p.value);
if(YaddedProducts.contains(p.value)){
addedProducts.add(p.-value);
combinedProducts.add(p);

}
by
}
return combinedProducts;
}
private Vector productList(int agentlndex, MonitorDef agent, String host){
//Debug.out(capabilities for: " + agent.clientAgent());
Vector capabilities = agent.capable();
Vector productlndex = new Vector();
for(int cnt = 0; cnt < capabilities.size(); cnt++){
String product = (String) capabilities.get(cnt);
IndexPair index = new IndexPair(agentlndex, product);
productlndex.add(index);

}

return productlndex;

}

APPENDIX D. SOURCE CODE 135

D.18 org.grid.client : MonitorConnection

package org.grid.client;
import java.util.Vector;
import java.util.Properties;
import java.io.*;
import org.grid.client.ssl.PromiscuousHttpsMessage;
import java.net.URL;
import org.grid.support.Debug;
public class MonitorConnection {
private Vector nodes;
private String servletName;
private URL serviletUrl;
private String userName;
private String userPassword;
public MonitorConnection(String s, String name, String password) _
throws java.net.ConnectException{
userName = name;
userPassword = password;
servletName = s;
connect();
+
private void connect() throws java.net.ConnectException{
try {
servletUrl = new URL(servietName);
}
catch(Java.net._MalformedURLException e){
Debug.out(*'Can’t create url for: " + servletName);
throw new java.net.ConnectException();
}
+
public Vector getSiteList(){
return getValue('getSiteList”,null,null, null);
+
public Vector getNodeList(String site){
return getValue('getNodeList",site,null, null);
+
public Vector getProductList(String site, String node){
return getValue(''getProductList”,site,node,null);

APPENDIX D. SOURCE CODE 136

by
public String getProductValue(String site, String node, String product){

return getSinglevValue(''getProduct",site,node,product);
by
private String getSinglevValue(String command, String site, String node, _
String product) {
Vector v = getValue(command, site, node, product);
return (String) v.get(0);
by
public boolean getAuthenticated(){
Vector test = getValue("",null,null null);
if(test.size()>0){
String value = (String) test.get(0);
if(lvalue.equals("Error: 403'")){
return true;

+
}
return false;
+
private Vector getValue(String command, String site, String node, String_
product) {
try {
PromiscuousHttpsMessage msg = new PromiscuousHttpsMessage(servletUrl);
Properties props = new Properties();
props.put('userName', userName);
props.put('userPassword', userPassword);
props.put(command, "1');
if(command!=null) props.put(command, *1');
if(site!=null) props.put(‘'siteName", site);
if(node!=null) props.put(‘'nodeName’, node);
if(product!=null) props.put(*'productName"™, product);
String inputLine;
Vector dataV = new Vector();
BufferedReader in = new BufferedReader(new InputStreamReader(msg.
sendGetMessage(props)));
while ((inputLine = in.readLine()) !'= null){
dataV.add(inputLine);
by
i

n.close();

APPENDIX D. SOURCE CODE 137

//System.out.printIn(’'Retrieved: " + msg.toString());
return dataV;
}
catch (Exception e) {
e.printStackTrace();
System.out.printin(e);
return new Vector();

}
}
}

D.19 org.grid.client.awt : AnimGraph

package org.grid.client.awt;

import java.awt.*;

import org.grid.support.Debug;

public class AnimGraph extends Panel implements Runnable{
public String pollSiteName=""";
public String polINodeName=""";
public String pollProductName=""";
private Thread thread;
private int coordCounter = 0O;
private int coords[];
private int newCoord = O;
private int numberCoords;
private int xGap;
private int lastRemovedY = 0O;
private int scaleHeight;
private final static int INSET = 40;
private int frameHeight;
private int frameWidth;
private int graphHeight;
private int graphWidth;
private Image offScreenlmage;
private Graphics offScreenContext;
public AnimGraph(int maxHeight, int numberOfPlots, String site, String _

node, String product){
pollSiteName=site;

APPENDIX D. SOURCE CODE

138

pol INodeName=node;

pol IProductName=product;
scaleHeight = maxHeight;
numberCoords = numberOfPlots;
setVisible(true);
setBackground(Color.white);

}
public void run(Q) {
Thread me = Thread.currentThread();
while (thread == me) {

try {
thread.sleep(1000);

}
catch (InterruptedException e) {
break;
}
}
thread = null;
}
public void insertData(int v){
coordCounter=coordCounter+1;
if(coordCounter*xGap>=graphWidth){
coordCounter=0;

}

newCoord=v;

repaint();
+
public void start() {
frameWidth=getWidth();
frameHeight=getHeight();

graphHeight=frameHeight-(INSET*2);
graphWidth=frameWidth-(INSET*2);

float xGapf = (Ffloat) ((float) graphWidth) / ((float) numberCoords);

XGap = (int) xGapf;

APPENDIX D. SOURCE CODE 139

printval(""Gap for x', xGap);
printval (""Number values', numberCoords);
printval("Width of graph', graphWidth);

graphWidth=numberCoords*xGap;

coords = new int[numberCoords];

offScreenlmage = this.createlmage(frameWidth,frameHeight);
offScreenContext = offScreenlmage.getGraphics();
thread = new Thread(this);
thread.setPriority(Thread .MIN_PRIORITY);
thread.start();
}
public synchronized void stop() {
thread = null;
}
private int rescale(int value){
float T = ((float) value / (float) scaleHeight);
f = F * ((float) graphHeight);
f = ((float) graphHeight) - F;
return (int) F;
+
private void printval(String I, int v){
System.out.print(l +": ");
System.out.printin(v);
+
public void paint(Graphics g){
if(offScreenContext==nul1){
// we are not ready to be drawn on yet
return;

}

int x1;
int yl;
int x2;
int y2;

APPENDIX D. SOURCE CODE 140

int highestvalue = 0;

offScreenContext.clearRect(0,0, frameWidth, frameHeight);
offScreenContext.setColor(new Color(245,245,245));
offScreenContext. FilIRect(INSET*2, INSET,graphWidth,graphHeight);
offScreenContext.setColor(new Color(200,200,200));
int yGuideLines = (int) ((float) ((float) graphHeight) /7 ((Float) 10));
for(int cnt = yGuidelLines;cnt<=graphHeight;cnt=cnt+yGuideLines){
offScreenContext.drawLine(INSET*2,cnt+INSET,graphWidth+(INSET*2),
CNt+INSET);
}
//
offScreenContext.setColor(Color.blue);
int pointer = coordCounter;
coords[pointer]=newCoord;
for(int cnt=numberCoords;cnt>0;cnt--){
x1 = (INSET*2)+(cnt*xGap);
y1l = INSET+rescale(coords[pointer]);
if(coords[pointer]>highestValue){
highestvValue = coords[pointer];

+
//if(coords[pointer]>0){
iT(pointer>0){
if(cnt==0){
//Debug.out("'This the the bit");
X2 = X1;
y2 = INSET+rescale(lastRemovedY);
//y2=0;
lastRemovedY=coords[pointer];
}
else{
//Debug.out('Other'™);
x2 = (INSET*2)+((cnt-1)*xGap);
y2 = INSET+rescale(coords[pointer-1]);
}
offScreenContext.drawLine(x1,yl,x2,y2);

if(pointer == coordCounter){
printval("x1", x1);
printval("'yl™, yl);

APPENDIX D. SOURCE CODE

141

printvVal ("'x2", x2);
printval("y2", y2);
}
by
if(pointer==0){
pointer=numberCoords-1;
}
else{
pointer--;
}
}
if(highestValue>scaleHeight){
scaleHeight = highestValue;
}

offScreenContext.setColor(Color.black);
offScreenContext.drawRect (INSET*2, INSET,graphWidth,graphHeight);
offScreenContext.drawRect(0,0,frameWidth-1,frameHeight-1);

g-drawlmage(offScreenlmage,0,0,this);
Debug.out('End paint');

}

public void update(Graphics g){
// we dont update - it would redraw the whole panel
paint(g);

}

}

D.20 org.grid.client.awt : MonitorInterface

package org.grid.client.awt;

import java.awt.*;

import java.awt.event.*;

import java.util.Vector;

import javax.swing.Timer;

import org.grid.client.awt.GridTree;

import org.grid.client.MonitorConnection;
public class Monitorlnterface extends Frame{

APPENDIX D. SOURCE CODE

142

public Label txtValue = new Label();
private Button btnPollProduct = new Button("Plot");
private MonitorConnection monitorServlet;
private GridTree gTree;
private ScrollPane treeContainer = new ScrollPane();
private AnimGraph myGraph=null;
private Timer pollTimer;
private boolean pollStarted=false;
private String lastRetSiteName=""";
private String lastRetNodeName=""";
private String lastRetProductName=""";
public Monitorinterface(String server){

setBounds(0,0,780,520);

setResizable(false);

setLayout(null);

this.connectMonitor(server);

this.drawGui(Q);

this.addWindowListener(

new WindowAdapter(){//anonymous class definition
public void windowClosing(WindowEvent e){
System.exit(0);//terminate the program
}
by

)

by

public void display(String productValue, String site, String node, _

String product){
txtValue.setText(productvalue);
lastRetSiteName=site;
lastRetNodeName=node;
lastRetProductName=product;
if(product.startsWith('data')){
btnPol IProduct.setEnabled(true);
}
else{
btnPol IProduct.setEnabled(false);

}
}

private void drawGui(Q{

APPENDIX D. SOURCE CODE 143

gTree = new GridTree(monitorServlet, this);
setLayout(null);
setBackground(Color.lightGray);
add(btnPol IProduct);
add(txtValue);
txtValue.setBackground(Color.white);
btnPol IProduct.setBounds(690,30,50,25);
txtValue.setBounds(260,30,420,25);
txtValue.setFont(new Font("Arial',0,14));
btnPol IProduct.setEnabled(false);
add(treeContainer);
treeContainer.setBounds(10,30,240,430);
//treeContainer.setLayout(null);
treeContainer.add(gTree);
gTree.setBounds(10,30,230,420);
btnPol IProduct.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent event){
myGraph = new AnimGraph(100,50, lastRetSiteName, lastRetNodeName,
lastRetProductName);
add(myGraph) ;
myGraph.setBounds(260,70,500,400);
myGraph.start();
pollTimer = new Timer(3000,pollProduct);
pollTimer.start();
pollStarted = true;
btnPol IProduct.setEnabled(false);

+
s
}
ActionListener pollProduct = new ActionListener() {
public void actionPerformed(ActionEvent event) {
String valueString = monitorServlet.getProductValue(myGraph.
pol1SiteName,myGraph.pol INodeName,myGraph.pol 1ProductName);
int valuelnt = Integer.parselnt(valueString);
myGraph. insertData(valuelnt);

+
};
private void connectMonitor(String server){
try {

APPENDIX D. SOURCE CODE 144

monitorServlet = new MonitorConnection(server + "/gridmonitor/_
Monitor'™, "mat@UniLan', "beagleboyl™);

}

catch(Java.net.ConnectException e){
System.out.printIn(*'Can’t connect to server: " + server);
System.out.printIn(’l can’t run without a servlet to talk to");
System.exit(0);

}

by
}

D.21 org.grid.client.awt : GridTree

package org.grid.client.awt;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import org.grid.client._MonitorConnection;
public class GridTree extends Canvas implements MouselListener{
public Tree dTree = new Tree(''root", null);
public Image shapeNodeJdoiner = null;
public Image shapeBranchJoinerPlus = null;
public Image shapeBranchJoinerMinus = null;
public Image shapeBranchlconOpen = null;
public Image shapeBranchlconClose = null;
public Image shapeNodelcon = null;
public Image shapeContinueBar = null;
private String workingString="Working...";
public int shapeW;
public int shapeH;
public int shapeYOffset=2;
public int textH;
private Monitorlnterface parent;
private MonitorConnection monitorServlet;
public GridTree(MonitorConnection servletConnection, MonitoriInterface p){
parent = p;
monitorServlet = servletConnection;
setBackground(Color.white);

APPENDIX D. SOURCE CODE 145

Vector sites = monitorServlet.getSiteList();
for(int pnt = 0; pnt < sites.size(); pnt++){
String site = (String) sites.get(pnt);
dTree.add(true, site);
dTree.branch(pnt) .add(false, workingString);
}
dTree.setOpen(true);
addMouseListener(this);
by
public void mouseClicked(MouseEvent e) {
reportMouse("'Mouse clicked (# of clicks: " + e.getClickCount() + ")", e);
Node node = dTree.clickTree(e.getX(), e.getY();
if(node!=nul){
//System.out.println(node.getParents());
StringTokenizer st = new StringTokenizer(node.getParents(),":");
Vector variables = new Vector(3);
variables.add(null);variables.add(null);variables.add(null);
String siteName, nodeName,productName;
int sn = 0;
while (st.hasMoreTokens()) {
variables.set(sn,st.nextToken());
sn++;
+
siteName=(String) variables.get(0);
nodeName=(String) variables.get(l);
productName=(String) variables.get(2);
System.out.printIn(siteName + "." + nodeName + "." + productName);
if(node.hasChild()){
node.toggleOpen();
repaint();
+
if(productName!=nul 1){
parent.display(monitorServilet.getProductvValue(siteName,nodeName,
productName),siteName, nodeName, productName);
by
else{
Tree thisNode = (Tree) node;
if(nodeName!l=null){ //&& !'thisNode.child(0).getName().equals_
(workingString)

APPENDIX D. SOURCE CODE 146

Vector productList = monitorServlet.getProductList(siteName,
nodeName) ;
thisNode.clear();
for(int cnt=0;cnt<productList.size();cnt++){
String pn = (String)productList.get(cnt);
thisNode.add(false,pn);
+
}

else{
if(siteName!l=null){
Vector nodeList = monitorServlet.getNodeList(siteName);

thisNode.clear();

for(int cnt=0;cnt<nodeList.size();cnt++){
String nn = (String)nodeList.get(cnt);
thisNode.add(true,nn);
thisNode.branch(cnt) .add(false, workingString);

void reportMouse(String eventDescription, MouseEvent e) {
System.out.printin(eventDescription + " x:" + String.valueOf(e.getX()) _
+ " y: " + String.valueOf(e.getY()));
+
public void mouseEntered(MouseEvent e) { }
public void mouseExited(MouseEvent e) { }
public void mousePressed(MouseEvent e) {
reportMouse("'Mouse clicked (# of clicks: " + e.getClickCount() + ")", e);
Node node = dTree.clickTree(e.getX(), e.getY());
if(node!=null){
node.setColor(Color.red);
repaint();
}
+

public void mouseReleased(MouseEvent e) {
reportMouse("'Mouse clicked (# of clicks: " + e.getClickCount() + ")", e);
Node node = dTree.clickTree(e.getX(), e.getY());

APPENDIX D. SOURCE CODE

147

}

if(node!=nul){

node.setColor(Color.black);

repaint();
¥

private Image createShapeNodeJoiner(){

}

Image offScreenlmage =

createlmage(shapeW, shapeH) ;

Graphics offScreenContext = offScreenlmage.getGraphics();

offScreenContext.
offScreenContext.
offScreenContext.

setColor(new Color(128,128,128));
drawLine(shapeW/2,0,shapeW/2,shapeH) ;
drawLine(shapeW/2, (shapeH/2)+2,shapeW, (shapeH/2)+2);

//o0ffScreenContext.drawRect(0,0, shapeW, shapeH);
return offScreenlmage;

private Image createShapeBranchJoinerPlus(){

}

Image offScreenlmage =

createlmage(shapeW, shapeH) ;

Graphics offScreenContext = offScreenlmage.getGraphics();

offScreenContext.
offScreenContext.
offScreenContext.
offScreenContext.
offScreenContext.
offScreenContext.
offScreenContext.
offScreenContext.
offScreenContext.

setColor(new Color(128,128,128));
drawLine(shapeW/2,0,shapeW/2,shapeH);
drawLine(shapeW/2, (shapeH/2)+2,shapeW, (shapeH/2)+2);
setColor(Color.white);
FfillRect(3,5,shapeW-6,shapeH-10);
setColor(Color.black);

drawRect (3,5, shapeW-6,shapeH-10);
drawLine((shapeW/2)-2,shapeH/2, (shapeW/2)+2,shapeH/2);
drawLine(shapeW/2, (shapeH/2)-2,shapeW/2, (shapeH/2)+2);

//o0ffScreenContext.drawRect (0,0, shapeW, shapeH);
return offScreenlmage;

private Image createShapeBranchJoinerMinus(){

Image offScreenlmage =

createlmage(shapeW, shapeH) ;

Graphics offScreenContext = offScreenlmage.getGraphics();

offScreenContext.
offScreenContext.
offScreenContext.
offScreenContext.
offScreenContext.
offScreenContext.
offScreenContext.

setColor(new Color(128,128,128));
drawLine(shapeW/2,0,shapeW/2,shapeH) ;
drawLine(shapeW/2, (shapeH/2)+2,shapeW, (shapeH/2)+2);
setColor(Color.white);
fillRect(3,5,shapeW-6,shapeH-10);
setColor(Color.black);

drawRect (3,5, shapeW-6,shapeH-10);

APPENDIX D. SOURCE CODE 148

offScreenContext.drawLine((shapeW/2)-2,shapeH/2, (shapeW/2)+2,shapeH/2);
//o0ffScreenContext.drawRect(0,0,shapeW, shapeH);
return offScreenlmage;

+

private Image createShapeContinueBar(){
Image offScreenlmage = createlmage(shapeW,shapeH) ;
Graphics offScreenContext = offScreenlmage.getGraphics();
offScreenContext.setColor(new Color(128,128,128));
offScreenContext.drawLine(shapeW/2,0,shapeW/2,shapeH);
//o0ffScreenContext.drawRect(0,0,shapeW, shapeH);
return offScreenlmage;

+

private Image createShapeNodelcon(){
Image offScreenlmage = createlmage(shapeW,shapeH) ;
Graphics offScreenContext = offScreenlmage.getGraphics();
offScreenContext.setColor(new Color(128,128,128));
offScreenContext.drawLine(0, (shapeH/2)+2,shapeW, (shapeH/2)+2);
//o0ffScreenContext.drawRect(0,0,shapeW, shapeH);
return offScreenlmage;

+

private Image createShapeBranchlconOpen(){
Image offScreenlmage = createlmage(shapeW,shapeH) ;
Graphics offScreenContext = offScreenlmage.getGraphics();
offScreenContext.setColor(new Color(128,128,128));
offScreenContext.drawLine(0,shapeH/2,shapeW,shapeH/2);
offScreenContext.drawLine(shapeW/2,shapeH/2,shapeW/2,shapeH) ;
offScreenContext.setColor(new Color(5,10,207));
//o0ffScreenContext.fillRect(2,4,7,11);
//o0ffScreenContext.fillRect(7,6,6,9);
offScreenContext.setColor(new Color(112,115,244));
offScreenContext.fillRect(3,5,5,9);
offScreenContext.fillRect(3,7,10,6);
offScreenContext.setColor(new Color(5,10,207));
offScreenContext.fillRect(5,6,10,6);
offScreenContext.setColor(new Color(112,115,244));
offScreenContext.fillRect(5,10,9,5);
offScreenContext.fillRect(7,9,5,5);
//o0ffScreenContext.drawRect(0,0,shapeW,shapeH) ;
return offScreenlmage;

APPENDIX D. SOURCE CODE

149

}

private Image createShapeBranchlconClose(){

}

Image offScreenlmage = createlmage(shapeW,shapeH) ;

Graphics offScreenContext = offScreenlmage.getGraphics();
offScreenContext.setColor(new Color(128,128,128));
offScreenContext.drawLine(0,shapeH/2,shapeW,shapeH/2);
offScreenContext.drawLine(shapeW/2,shapeH/2,shapeW/2,shapeH) ;
offScreenContext.setColor(new Color(112,115,244));
offScreenContext.fillRect(2,4,7,11);
offScreenContext.fillRect(7,6,6,9);
//o0ffScreenContext.drawRect(0,0,shapeW, shapeH);

return offScreenlmage;

public void paint(Graphics g){

/**

g-setColor (Color.black);

g.setFont(new Font("Arial™,0,14));

textH = getFontMetrics (getFont ()).getHeight();

shapeH = textH + (shapeYOffset *2);

shapeW = 16;

if(shapeNodeJoiner==nul1){
shapeNodeJoiner = createShapeNodeJoiner();
shapeBranchJdoinerPlus = createShapeBranchJoinerPlus();
shapeBranchJoinerMinus = createShapeBranchJoinerMinus();
shapeBranchlconOpen = createShapeBranchlconOpen();
shapeNodelcon = createShapeNodelcon();
shapeContinueBar = createShapeContinueBar();
shapeBranchlconClose = createShapeBranchlconClose();

}

int end = dTree.printTree(g,this,20,0);

dTree.add(false, "1 Node');

dTree.add(true, "2 Branch');
dTree.branch(l).add(false, "1 Node');
dTree.branch(l).add(false, "2 Node');
dTree.branch(l).add(true, "3 Branch');
dTree.branch(l).branch(2).add(false, "1 Node');
dTree.branch(l).add(false, "4 Node');

APPENDIX D. SOURCE CODE

150

dTree.branch(l).add(false, "5 Node');
dTree.add(false, "3 Node');
dTree.add(false, "4 Node');
dTree.branch(l).setOpen(true);
dTree.branch(1).branch(2).setOpen(true);
dTree.setOpen(true);

**/

D.22 org.grid.client.awt : Node

package org.grid.client.awt;
import java.awt.*;
public class Node{
protected String nodeName;
protected Node parentName;
protected boolean visible;
protected int yPosTop = 0;
protected int yPosBot = 0;
private int yCoord = 0O;
private int nodeDepth = 0O;
private Color printColor = Color.black;
public Node(String name, Node parent){
nodeName=name;

parentName=parent;
by
public boolean ylsBetween(int y){
if((y <= yPosBot) && (y >= yPosTop)){
return true;
}
else{
return false;

}

3
public String getName(){

return nodeName;

3

public boolean isVisible(){
return visible;

APPENDIX D. SOURCE CODE 151

}

public void setOpen(boolean canBeSeen){
visible = canBeSeen;
by
public void toggleOpen(){
if(visible){
visible=false;
}
else{
visible=true;
}

b
public boolean hasChild(){
return false;

by
protected String getParents(){
String res = "";
if(parentName!l=nul1){
res = parentName.getParents();
return res + ":" + nodeName;
}
else{
return ''';
}
+

protected void setColor(Color c){
printColor = c;

+

protected int setNodePosition(int yOffset, int textH, int depth, _
GridTree canvas){
nodeDepth=depth;
yPosTop=yOffset - canvas.shapeH;
yPosBot=yOffset;
int totalPad = textH;
yCoord=yOffset;
yOffset=yOffset + canvas.shapeH;
return yOffset;

+

protected void drawNode(Graphics g, GridTree canvas){

APPENDIX D. SOURCE CODE 152

Color oldColor = g.getColor(Q);
g-setColor(printColor);
String label=getName();
int relX = 0;
for(int cnt=1; cnt<nodeDepth;cnt++){
g-drawlmage(canvas.shapeContinueBar,relX ,yPosTop+canvas.shapeYOffset,
canvas);
relX = relX + canvas.shapeW;
}
if(hasChild()){
if(lvisible){
g-drawlmage(canvas.shapeBranchJoinerPlus, relX,yPosTop+canvas. _
shapeYOffset, canvas);
relX = relX + canvas.shapeW;
g-drawlmage(canvas.shapeBranchlconClose,relX ,yPosTop+canvas.
shapeYOffset, canvas);
relX = relX + canvas.shapeW;
+
else{
g-drawlmage(canvas.shapeBranchJoinerMinus, relX,yPosTop+canvas.
shapeYOffset, canvas);
relX = relX + canvas.shapeW;
g-drawlmage(canvas.shapeBranchlconOpen,relX ,yPosTop+canvas.
shapeYOffset, canvas);
relX = relX + canvas.shapeW;
+
}
else{
g-drawlmage(canvas.shapeNodeJdoiner,relX ,yPosTop+canvas.shapeYOffset,
canvas);
relX = relX + canvas.shapeW;
g.-drawlmage(canvas.shapeNodelcon,relX ,yPosTop+canvas.shapeYOffset,
canvas);
relX = relX + canvas.shapeW;
}
relX = relX + 2;
g-drawString(label,relX,yCoord);
//g.drawLine(0,yCoord,200,yCoord);
g-setColor(oldColor);

APPENDIX D. SOURCE CODE 153

D.23 org.grid.client.awt : Tree

package org.grid.client.awt;
import java.awt.*;
import java.util._Vector;
public class Tree extends Node{
private Vector theTree = new Vector();
public Tree(String name, Node parent){
super(name, parent);
by
public void add(boolean hasChild, String nodeName){
if(hasChild){
// this node is a branch
theTree.add(new Tree(nodeName, this));
}
else{
// this node is a value
theTree.add(new Node(nodeName, this));

}
}

public void change(int nodeNum,boolean hasChild, String nodeName){
if(hasChild){
// this node is a branch
theTree.set(nodeNum,new Tree(nodeName, this));
}
else{
// this node is a value
theTree.set(nodeNum,new Node(nodeName, this));
}

}
public Tree branch(int nodeNum){

return (Tree) theTree.get(nodeNum);
}
public Node child(int nodeNum){
return (Node) theTree.get(nodeNum);

APPENDIX D. SOURCE CODE 154

b
public void clear(Q{

theTree = new Vector();
by
public String select(int nodeNum){
Node theNode = (Node) theTree.get(nodeNum);
return theNode.getParents();
+
public String select(){
return getParents();
+
public boolean hasChild(){
if(theTree.size()>0){
return true;
}
else{
return false;

}

by
public Vector getNodeList(){

Vector nodeList= new Vector();
for(int cnt=0; cnt<theTree.size(); cnt++){
Node thisNode = (Node) theTree.get(cnt);
if(thisNode.hasChild()){
nodeList.add("'+" + thisNode.getName());
by
else{
nodeList.add(thisNode.getName());

}
}
return nodelList;
by
public int printTree(Graphics g, GridTree canvas, int yOffset, iInt depth){
depth++;
if(visible){
for(int cnt=0; cnt<theTree.size(); cnt++){
Node thisNode = (Node) theTree.get(cnt);
if(thisNode.hasChild()){
yOffset = thisNode.setNodePosition(yOffset, canvas.textH, depth,

APPENDIX D. SOURCE CODE 155

canvas);
thisNode.drawNode(g,canvas);
Tree thisTree = (Tree) thisNode;
yOffset = thisTree.printTree(g,canvas,yOffset, depth);
}
else{
yOffset = thisNode.setNodePosition(yOffset, canvas.textH, depth,
canvas);
thisNode.drawNode(g,canvas);

}
by
}
return yOffset;
}
public Node clickTree(int x, int y){
if(visible){
for(int cnt=0; cnt<theTree.size(); cnt++){
Node thisNode = (Node) theTree.get(cnt);
if(thisNode.ylsBetween(y)){
return thisNode;
}
else{
iT(thisNode.hasChild()){
Tree thisTree = (Tree) thisNode;
Node childClick=thisTree.clickTree(X, Y);
if(childClick!=null){
return childClick;

}
}
}
}

return null;

}

APPENDIX D. SOURCE CODE 156

D.24 org.grid.client.awt : MonitorInterface notree

package org.grid.client.awt;
import java.awt.*;
import java.awt.event.*;
import java.util ._Vector;
import javax.swing.Timer;
import org.grid.client.MonitorConnection;
public class Monitorilnterface extends Frame{
// private SiteData siteData;
private Button btnRefreshSiteData = new Button(''Refresh Site Data');
private Button btnPollProduct = new Button("'Poll Product'™);
private List IstNodes = new List(10);
private List IstProducts = new List(10);
private TextField txtValue = new TextField();
private AnimGraph myGraph;
private Timer pollTimer;
private boolean pollStarted=false;
private MonitorConnection monitorServilet;
private String siteName="UnilLan";
private String nodeName;
private String productName;
private String polINodeName;
private String pollProductName;
public Monitorinterface(String server){
setBounds(0,0,730,520);
setResizable(false);
setLayout(null);
this.drawGui(Q);
this.connectMonitor(server);
this.addWindowListener(
new WindowAdapter(){//anonymous class definition
public void windowClosing(WindowEvent e){
System.exit(0);//terminate the program
}
by
);
by

private void connectMonitor(String server){

APPENDIX D. SOURCE CODE 157

try {
monitorServlet = new MonitorConnection(server + "/gridmonitor/Monitor');

}

catch(Java.net.ConnectException e){
System.exit(0);
}
by

private void drawGui(Q{
setLayout(null);
add(btnRefreshSiteData);
add(btnPolIProduct);
add(IstNodes);
add(IstProducts);
add(txtvalue);
IstNodes.setBackground(Color.white);
IstProducts.setBackground(Color.white);
txtValue.setBackground(Color.white);
btnRefreshSiteData.setBounds(10,40,200,25);
btnPol IProduct.setBounds(10,460,200,25);
IstNodes. setBounds(10,80,200,150);
IstProducts.setBounds(10,240,200,200);
txtValue.setBounds(220,450,500,35);
btnPolIProduct.setEnabled(false);
btnRefreshSiteData.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent event){
Vector nodeList = monitorServlet.getNodeList(siteName);
IstNodes.removeAll();
IstProducts.removeAll();
txtValue.setText('"");
btnPol IProduct.setEnabled(false);
for(int cnt=0;cnt<nodelList.size();cnt++){
String nodeName = (String)nodelList.get(cnt);
IstNodes.add(nhodeName) ;

}
D:;

IstNodes.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent event){
nodeName = IstNodes.getSelectedltem();

APPENDIX D. SOURCE CODE 158

IstProducts.removeAll();

txtValue.setText(""");

btnPol IProduct.setEnabled(false);

Vector products = monitorServlet.getProductList(siteName,nodeName);

for(int cnt = 0; cnt < products.size(); cnt++){
IstProducts.add((String) products.get(cnt));

}
}
D:;

IstProducts.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent event){

productName = IstProducts.getSelectedltem();

txtValue.setText(monitorServilet.getProductvValue(siteName,nodeName,
productName)) ;

if(productName.startsWith("'data') && !pollStarted){
btnPol IProduct.setEnabled(true);

}

else{
btnPol IProduct.setEnabled(false);

}
}

D
btnPol IProduct.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent event){
pol INodeName = nodeName;
polIProductName = productName;
myGraph = new AnimGraph(100,50);
add(myGraph) ;
myGraph.setBounds(220,40,500,400);
myGraph.start();
pollTimer = new Timer(3000, pollProduct);
pollTimer.start();
pollStarted = true;
btnPol IProduct.setEnabled(false);

}
D:;
}

ActionListener pollProduct = new ActionListener() {
public void actionPerformed(ActionEvent event) {

APPENDIX D. SOURCE CODE 159

String valueString = monitorServlet.getProductValue(siteName, _
ol INodeName, pol IProductName) ;

txtValue.setText(valueString);

int valuelnt = Integer.parselnt(valueString);

myGraph. insertData(valuelnt);

D.25 org.grid.client.ssl : PromiscuousHttpsMessage

package org.grid.client.ssl;
import com.oreilly.servlet.*;
import java.net.*;
import java.security.KeyManagementException;
import java.security.NoSuchAlgorithmException;
import java.security.Security;
import javax.net.ssl.*;
public class PromiscuousHttpsMessage extends HttpMessage {
public PromiscuousHttpsMessage(URL serviet) {
super(servlet);
System.out.printIn(""PromiscuousHttpsMessage is being used");
//System.setProperty(*'javax.net.ssl ._keyStore","/usr/java/tomcat/. _
keystore');
//System.setProperty("'javax.net.ssl ._keyStorePassword", ""fuckyou™);
//use our own trust manager so we can always trust
//the URL entered in the configuration.
//X509TrustManager tm = new PromiscuousX509TrustManager();
PromiscuousX509TrustManager tm = new PromiscuousX509TrustManager();
KeyManager[] km = null;
X509TrustManager[] tma = new X509TrustManager[] { tm };
try {
SSLContext sslContext = SSLContext.getlnstance(*'TLS");
//SSLv3'");
sslContext.init(km, tma, new java.security.SecureRandom());
SSLSocketFactory sfl = sslContext.getSocketFactory();
HttpsURLConnection.setDefaul tSSLSocketFactory(sfl);
HttpsURLConnection.setDefaul tHostnameVerifier(new _

APPENDIX D. SOURCE CODE 160

PromiscuousHostnameVerifier());

}

catch (NoSuchAlgorithmException e) {
System.out.printin(*_Fuckedl');
e.printStackTrace(System.out);

}

catch (KeyManagementException e) {
System.out.printIn(’"_Fucked2'™);
e.printStackTrace(System.out);

}

//SSLSetup.setbDebug();

by
}

D.26 org.grid.client.ssl : PromiscuousHostnameVeri-
fier

package org.grid.client.ssl;
import javax.net.ssl.*;
public class PromiscuousHostnameVerifier implements HostnameVerifier {
public boolean verify(String hostname, SSLSession session) {
System.out.printIn(""PromiscuousHostnameVerifier lied about *verify’'");
return true;

}
}

D.27 org.grid.client.ssl : PromiscuousX509TrustManager

package org.grid.client.ssl;

import java.security.cert.X509Certificate;

import javax.net.ssl.*;

/*

import com.sun.net.ssl.X509TrustManager;

*/

/**

* A trust manager which trusts a client and server certificates.

APPENDIX D. SOURCE CODE 161

* Used by SSLSetup class.
*/
public class PromiscuousX509TrustManager implements X509TrustManager {
public X509Certificate[] getAcceptedlssuers() {
System.out.printIn(""PromiscuousX509TrustManager lied about _
getAcceptedlssuers™™);
return null;
by
public boolean isClientTrusted(X509Certificate[] chain) {
System.out.printIn(""PromiscuousX509TrustManager lied about _
isClientTrusted”™);
return true;
s
public boolean isServerTrusted(X509Certificate[] chain) {
System.out.printIn(""PromiscuousX509TrustManager lied about _
“isServerTrusted’™);
return true;
}
public void checkServerTrusted(X509Certificate[] chain, String authType) {}
public void checkClientTrusted(X509Certificate[] chain, String authType) {}

D.28 org.grid.plugins.modules.procmon.serialised : Mib

package org.grid.plugins.modules.procmon.serialised;
import java.rmi.*;
import java.util.*;
/** The RMI client will use this interface directly.
* The RMI server will make a real remote object that
* implements this, then register an instance of it
* with some URL.
*/
public interface Mib extends Remote {
public Vector getOidList() throws RemoteException;
public Vector getBulk(Vector oids) throws RemoteException;
public String get(String oidPath) throws RemoteException;
}

APPENDIX D. SOURCE CODE 162

D.29 org.grid.plugins.modules.procmon.serialised : MibImpl

package org.grid.plugins.modules.procmon.serialised;
import java.io.*;
import java.util.*;
import java.rmi.*;
import org.grid.support.Debug;
import java.rmi.server.UnicastRemoteObject;
public class Miblmpl extends UnicastRemoteObject implements Mib {
private String binPath = System.getProperty(‘'user.dir');
private Vector oidPaths;
public MibImpl () throws RemoteException {
super();
oidPaths = readMib();
Debug.out("'Mib loaded™);
by
private String escapeSpace(String s){
return new String(s.replaceAllI("" ", "\\ "));
by
public Vector getOidList(){
return oidPaths;
by
public Vector getBulk(Vector oids){
String thisOid;
Vector results = new Vector();

for(lterator i = oids.iterator(); i1.hasNext(Q);){
thisOid = (String) i1.next();
results.add(get(thisOid));

}

return results;

}

private Vector readMib(){

Vector oidVect = new Vector();
FileReader fileReader;
BufferedReader buffReader;

APPENDIX D. SOURCE CODE 163

}

String readlLine;
String mibFile=escapeSpace(binPath + "/mib/mib.conf");
Debug.out('Loading mib from: " + mibFile);
try{
fileReader = new FileReader(mibFile);
buffReader = new BufferedReader(fileReader);
while(buffReader.ready()){
readLine=buffReader.readLine();
//Debug.out(”l read: " + readLine);
oidVect.add(readLine);

}

}
catch(10Exception e){

Debug.out('Error reading mib file: " + mibFile);

}

return oidVect;

public String get(String oidPath){

String thisOid;
boolean knownOid = false;
for(lterator 1 = oidPaths.iterator(); i.hasNext();){
thisOid = (String) i.next();
//Debug.out(oidPath + "? " + thisOid);
iT(thisOid.equals(oidPath)){
knownOid = true;
by
}
if(knownOid){
if(oidPath_endsWith('.sh')){
Debug.out('Execute: " + oidPath);
return execute(oidPath);
by
else{
Debug.out(*'Read: " + oidPath);
if(oidPath.startsWith("'/")){
return lineReader(oidPath);
}
else{
return lineReader(binPath + */mib/*" + oidPath);

APPENDIX D. SOURCE CODE 164

}
}
}

else{
Debug.out("'Error unknown oid: " + oidPath);
return ''';

}
by
/**
public ProductList walk(Q{
by
**/
private String lineReader(String file){
FileReader fileReader;
BufferedReader buffReader;
String readlLine;
file=escapeSpace(file);
try{
fileReader = new FileReader(file);
buffReader = new BufferedReader(FileReader);
readLine=buffReader.readLine();
return readLine;
}
catch(10Exception e){
Debug.out("Error reading file: " + Tile);

}

return ;

by
private String execute(String cmd){

String readLine;

String allText = ""';

String cmdPath = escapeSpace(binPath + "/mib/mibscripts/" + cmd);
try {
Process Is _proc = Runtime.getRuntime().exec(cmdPath);
DatalnputStream buffln = new DatalnputStream(ls_proc._

getlnputStream());
whille ((readLine = buffIn.readLine()) !'= null) {
allText = allText + '"\n" + readLine;

}

APPENDIX D. SOURCE CODE 165

by
catch (Exception e) {
Debug.out(Error executing: " + cmdPath);

return ;

}

return allText.trim(Q);

}

}

D.30 org.grid.plugins.modules.procmon : Monitor

package org.grid.plugins.modulles.procmon;
import org.grid.plugins.modules.*;
import java.util.*;
import org.grid.monitor.agent.*;
import org.grid.support.*;
import java.net.*;
import org.grid.client.MonitorConnection;
import org.grid.mds.MdsGridData;
import java.rmi.*; // For Naming, RemoteException, etc.
import java.net.*; // For MalformedURLException
import java.io.*; // For Serializable interface
import org.grid.plugins.modules.procmon.serialised.*;
public class Monitor extends MonitorDef{
private ProcmonClient client = null;
public Monitor(String user, String pass, String site, String host) _
throws AgentException{
super(user, pass, site, host);
clientAgent=""procmon";
//Debug.out(clientAgent + " dynamicaly loaded ok'™);
try{
client = new ProcmonClient(hostName);
}
catch(AgentException e){
//Debug.out(clientAgent + " error during constructing™);
throw new AgentException(*");

APPENDIX D. SOURCE CODE 166

}

}
protected String getOidValue(String oidName){

return client.get(oidName);
by
private class ProcmonClient{
String hostAddress;
public ProcmonClient(String host) throws AgentException{
try{
//Debug.out("'ProcmonClient: Checking hostname™);
InetAddress.getByName(host); // test hostname is real, class _
will fail if it doesn’t resolve
hostAddress = host;
//Debug.out("'ProcmonClient: Testing first oid");
String testValue = get(''/proc/version');
if(testvalue.equals("")){
//Debug.out("'ProcmonClient: Got test oid but value was null'™);
throw new AgentException(''Got test oid but value was null'™);

}

by
catch(Exception e) {

//Debug.out("'Rmi can’t connect to host: " + hostAddress);

throw new AgentException(*'Rmi can’t connect to host: " + hostAddress);
+
//Debug.out("'ProcmonClient: Constructed ok');
}
public String get(String oid){
try{
// Get remote object and store it in remObject:
//Debug.out("'ProcmonClient: Starting mib connection');
Mib remoteMib = (Mib)Naming.lookup(*'rmi://" + hostAddress + "'/Mib");
//Debug.out(""ProcmonClient: Calling remote method");
return remoteMib.get(oid);
by
catch(Exception e){
return '"';
}
}

public Vector getProductList(){

APPENDIX D. SOURCE CODE 167

return null;

}
/**
Debug.out();
System.out.printIn("'Getting oid list");
String this0Oid;
Vector oidList = remoteMib.getOidList();
for(lterator i = oidList.iterator(); i.hasNext();){
thisOid = (String) i.next();
System.out.printIn(’* " + thisOid);
}
}
**/
¥
}

D.31 org.grid.plugins.modules.snmp : Monitor

package org.grid.plugins.modules.snmp;
import org.grid.plugins.modules.*;
import java.util.*;
import org.grid.monitor.agent.*;
import org.grid.support.*;
import com.snmp.*;
import java.net.*;
public class Monitor extends MonitorDef{
private SNMPClient client;
public Monitor(String user, String pass, String site, String host) _
throws AgentException{
super(user, pass, site, host);
clientAgent=""snmp"';
//Debug.out(clientAgent + " dynamicaly loaded ok'™);
try{
client = new SNMPClient(hostName, "‘public'™);
}
catch(AgentException e){
//System_out._printin(e);
throw new AgentException(*");

APPENDIX D. SOURCE CODE 168

}

}
protected String getOidValue(String oidName){

return client.get(oidName);
by
protected Vector getBulkOidValues(Vector products){
return null;
by
private class SNMPClient {
InetAddress hostAddress = null; // Host name of agent we are going for
String snmpCommunity; // We set snmp community name once when we start
int snmpVersion = 0; // SNMPv1
String hostlp;
public SNMPClient(String host, String community) throws AgentException{
try{
snmpCommunity = community;
hostAddress = InetAddress.getByName(host); // test hostname is _
real, class will fail if 1t doesn’t resolve
hostlp = hostAddress.getHostAddress();
/**
String testValue = get(""1.3.6.1.2.1.1.1.0");
if(testvalue.equals('")){
throw new AgentException('Can’t get test oid");
}
**/
}
catch (Java.net.UnknownHostException e) {
throw new AgentException(*'Unknown host');
by

}
public Vector getProductList(){

return null;

}
public String get(String oidName){

//Debug.out('SNMPget: " + oidName + " (" + snmpCommunity +'")");

SNMPv1Communicationlnterface comlnterface;
String oidValue = new String(Q);

try{

APPENDIX D. SOURCE CODE 169

SNMPV

SNM
SNMPO
get
SNMPO
Strin

comlnterface = new SNMPvl1Communicationlnterface(snmpVersion, _
hostAddress, snmpCommunity);

try{
arBindList newVars = comlnterface.getMIBEntry(oidName);

PSequence pair = (SNMPSequence)(nhewVars.getSNMPObjectAt(0));
bjectldentifier snmpOID = (SNMPObjectldentifier)pair._
SNMPOb jectAt(0);

bject snmpValue = pair.getSNMPObjectAt(1l);

g typeString = snmpValue.getClass().getName();

if (typeString.equals(''snmp.SNMPOctetString')){

Strin

// tr
int n
if (n
snmpS

}

}

else{

}

“ o

g snmpString = snmpValue.toString();

uncate at First null character

ullLocation = snmpString.index0f(’\0”);
ullLocation >= 0){

tring = snmpString.substring(0,nulllLocation);

oidValue snmpString;

oidvalue = snmpValue.toString(Q);

return oidValue;

}
catch (SNMPGetException e){

//Debug.out("'SNMP oid ”' + oidName + "’ doesn’t exist on host " _

+ hostlp);
}
catch (SNMPBadValueException e){
//Debug.out(*'SNMP bad value returned™);
3
catch (Java.io.l10Exception e) {
//Debug.out("'SNMP time out connecting to host: " + hostlp);

APPENDIX D. SOURCE CODE 170

catch (Java.net.SocketException e) {
//Debug.out("'SNMP error connecting to host: " + hostlp);
}

return "'"';

D.32 org.grid.plugins.modules : MonitorDef

package org.grid.plugins.modules;
import org.grid.plugins.*;
import java.util.*;
import org.grid.support.*;
public class MonitorDef implements PluginDef{
protected String hostName;
protected String siteName;
protected String userName;
protected String userPassword;
protected Vector productCapabilities = null;
protected String clientAgent = "
public MonitorDef(String user, String pass, String site, String host){
hostName = host;
siteName = site;
userName = user;
userPassword = pass;

+
public MonitorDef(){

b
public Class[] getParamTypes(){
try{
Class string = Class.forName(*java.lang.String™);
Class[] paramTypes = { string, string, string, string };
return paramTypes;

}

APPENDIX D. SOURCE CODE 171

catch(jJava. lang.ClassNotFoundException e){
e.printStackTrace();
System.exit(l);
return null;
}
+
public Vector capable(){
ProductMapDef pMap = (ProductMapDef) PluginManager.loadPlugin(''ProductMap',
Vector productMapList = pMap.getMap(clientAgent);
Vector productNames = new Vector();
productCapabilities = new Vector();

// now we check each oid is available and trim the map
// so the map will only contain products we can fetch

int mibSize=productMapList.size();
for(int cnt = 0; cnt < mibSize; cnt++){
StringPair map = (StringPair) productMapList.get(cnt);
// map.name = the oid (1.21.123.3.12.3)
// map.value = the product (infoCpuName)
if(getOidvalue(map.name).equals("")){
//Debug.out('Agent: " + clientAgent + ": " + map.name + " removed _
from capablity'™);
+
else{
//Debug.out(Agent: " + clientAgent + - " + map.name + " added to _
capablity');
productCapabilities.add(map);
productNames.add(map.value);

}
}

return productNames;

}
public String clientAgent(){

return clientAgent;

}
public String get(String productName){

APPENDIX D. SOURCE CODE 172

for(int cnt = 0; cnt < productCapabilities.size(); cnt++){
StringPair map = (StringPair) productCapabilities.get(cnt);
if(map.value.equals(productName)){
return getOidvValue(map.name);

+

}
return "'';

+

protected Vector getBulkOidValues(Vector products){
return null;

}

protected String getOidValue(String oidName){
System.out.printIn("'Not overridden function');
return null;

}
}

D.33 org.grid.plugins.modules : DataStoreDef

package org.grid.plugins.modules;
public class DataStoreDef {
public void printClass(){
System.out.printIn(*l am A Data Store");
}
}

D.34 org.grid.plugins.modules : SecurityDef

package org.grid.plugins.modules;
import org.grid.plugins.PluginDef;
public class SecurityDef implements PluginDef{
public SecurityDef(){
by
public boolean authenticate(String siteName, String userName, String _
userPassword){
return true;

}

APPENDIX D. SOURCE CODE 173

public Class[] getParamTypes(){
return null;

}
}

D.35 org.grid.plugins.modules.local : ProductMap

package org.grid.plugins.modules.local;

import org.grid.plugins.modules.*;

import java.util.*;

import java.net.*;

import java.io.*;

import java.sql.*;

import org.grid.support.*;

public class ProductMap extends ProductMapDef{
public Vector getMap(String agentClass){

Vector pMaps = new Vector();

try{
Class.forName('org.gjt.-mm.mysqgl .Driver') _newlnstance();

3
catch (Exception e) {
Debug.out(*'Couldn”t load MYSQL driver™);
3

try{
// Create a Connection and a Statement

Connection conn =DriverManager.getConnection("jdbc:mysql://_
127.0.0.1:3306/project", "snmp', "java');
Statement stmt = conn.createStatement();
ResultSet resultSet = stmt.executeQuery ("'SELECT _
product_mappings.oid, products.name FROM product_mappings,
products WHERE products. id=product_mappings.productid AND _
product_mappings.agent="""+ agentClass + "7;'");
//Debug.out("'SELECT oid, value FROM test WHERE host="" + _
hosts[cnt][0] + "’ order by stamp desc limit 0,1;');
while(MresultSet.isLast()){
resultSet.next();
StringPair map = new StringPair(resultSet.getString(l),
resultSet.getString(2));

APPENDIX D. SOURCE CODE 174

pMaps.add(map);
}

}
catch (Java.sql.SQLException e) {

Debug.out(*'Couldn’t execute sql command -" + agentClass);
System.out.printin(e);
}
return pMaps;
+
}

D.36 org.grid.plugins.modules.remote : Monitor

package org.grid.plugins.modules.remote;
import org.grid.plugins.modules.*;
import java.util.*;
import org.grid.monitor.agent.*;
import org.grid.support.*;
import java.net.*;
import org.grid.client._MonitorConnection;
import org.grid.mds.MdsGridData;
public class Monitor extends MonitorDef{
private ServletClient client = null;
public Monitor(String user, String pass, String site, String host) throws_
AgentException{
super(user, pass, site, host);
clientAgent=""'servilet";
//Debug.out(clientAgent + " dynamicaly loaded ok');
try{
client = new ServletClient(user, pass, site, host);
}
catch(AgentException e){
throw new AgentException(*);

}

+
public Vector capable(){

return client.getProductList();

APPENDIX D. SOURCE CODE 175

}
protected String getOidValue(String oidName){

return client.get(oidName);
+
private class ServletClient{
String nodeName;
String siteName;
String userName;
String userPassword;
MonitorConnection monitorServlet;
public ServletClient(String user, String pass, String site, String node)
throws AgentException{
//Debug.out("'ServiletClient has loaded for: " + site + "." + node);
nodeName=node;
siteName=site;
userName = user;
userPassword = pass;
try {
String siteUrl=MdsGridData.getServietUrl(siteName);
monitorServlet = new MonitorConnection(siteUrl, userName, _
userPassword) ;
+
catch(Java.net.ConnectException e){
// couldnt connect

}

}
public Vector getProductList(){

return monitorServlet.getProductList(siteName, nodeName);
}
public String get(String productName){
return monitorServlet.getProductValue(siteName, nodeName, productName);
}
}
}

D.37 org.grid.plugins.modules.remote : Security

package org.grid.plugins.modules.remote;

APPENDIX D. SOURCE CODE 176

import org.grid.plugins.modules.*;
import java.util.*;
import org.grid.monitor.agent.*;
import org.grid.support.*;
import java.net.*;
import org.grid.client._MonitorConnection;
import org.grid.mds.MdsGridData;
public class Security extends SecurityDef{
public boolean authenticate(String siteName, String userName, String _
userPassword){
if(testPassword(siteName, userName, userPassword)){
Debug.out("'remote security module thinks password is valid™);
return true;

}

else{
Debug.out("'remote security module thinks password is wrong");
return false;

}

+
private static boolean testPassword(String siteName, String userName, _
String userPassword){
MonitorConnection monitorServlet;
try {
String siteUrl=MdsGridData.getServletUrl(siteName);
monitorServlet = new MonitorConnection(siteUrl, userName, _
userPassword) ;
return true;
}
catch(Java.net._ConnectException e){
// couldnt connect
// if we cant reach the site we cant authenticate
// so this will fail
return false;

APPENDIX D. SOURCE CODE 177

D.38 org.grid.plugins.modules : ProductMapDef

package org.grid.plugins.modules;
import org.grid.plugins.PluginDef;
import java.util.Vector;
public class ProductMapDef implements PluginDef{
public Class[] getParamTypes(){
return null;
by
public Vector getMap(String agentClass){
return null;
by
}

D.39 org.grid.plugins.modules.jcifs : Security

package org.grid.plugins.modules. jcifs;
import org.grid.plugins.modules.*;
import jcifs.UniAddress;
import jcifs.smb.SmbSession;
import jcifs.smb.SmbAuthException;
import jcifs.smb.SmbException;
import jcifs.smb._NtImPasswordAuthentication;
import java.util.*;
import org.grid.support.*;
public class Security extends SecurityDef{
public boolean authenticate(String siteName, String userName, String _
userPassword){
i f(testPassword(userName, userPassword)){
Debug.out("jcifs security module thinks password is valid™);
return true;

}
else{
Debug.out("jcifs security module thinks password is wrong');
return false;
}
+

private static boolean testPassword(String userName, String userPassword){

APPENDIX D. SOURCE CODE 178

try{
String sambabDomainController = "mrflibble";
String sambaDomain = "‘does not seem to fucking matter";

UniAddress dc = UniAddress.getByName(sambaDomainController);
NtImPasswordAuthentication auth = new NtImPasswordAuthentication(_
sambaDomain, userName, userPassword);

SmbSession.logon(dc, auth);
return true;

}

catch(SmbAuthException sae) {
// auth failure - bad user / pass combo
return false;

}

catch(SmbException se) {
// samba failure - couldnt authenticate with teh server for some reason
System.out.printIn('Samba auth - problem contacting server');
return false;

}

catch(java.net.UnknownHostException e) {
// samba failure - couldnt aresolv the server hostname
System.out.printIn('Samba auth - couldn’t resolve auth serer name');
return false;

}

+
}

D.40 org.grid.plugins : PluginDef

package org.grid.plugins;

public interface PluginDef {
public Class[] getParamTypes();

}

D.41 org.grid.plugins : PluginManager

package org.grid.plugins;
import org.grid.plugins.modules.*;

APPENDIX D. SOURCE CODE 179

import org.grid.support.Debug;
import java.util.*;
import java.io.*;
import java.lang.reflect.*;
import org.grid.support.*;
public class PluginManager {
private static Class[] getParamTypes(String className){
//System.out._printIn(""Fetching param types for ' + className);
className = "org.grid.plugins.modules.”™ + className + "'Def";
PluginDef loadedObject = (PluginDef) createDynamicObject(className, null, nu
if(loadedObject == null){
System.out.printin(""Falied to load: " + className);
System.exit(l);
return null;

}
else{
return loadedObject.getParamTypes();
}
+
public static Object loadPlugin(String className, String filter, Object[] _
params){
Vector loadedObjects = loadPlugins(className, filter, params);
if(loadedObjects. iseEmpty()){
// when ever we ask for a plugin if we return nothing teh program will_
bust
// there should always be a plugin to saticfy the query
// so we stop
System.out.printIn(’’Can’t load at least one plugin using query:");
System.out.printin(className + ™ " + filter);
System.exit(l);
return null;
}
else{
return loadedObjects.get(0);
}
+

public static Vector loadPlugins(String className, String filter, _
Object[] params){
//System.out.printIn(*'Discovering plugins™);

APPENDIX D. SOURCE CODE 180

Vector loadedObjects = new Vector();
Class|] paramTypes = getParamTypes(className);
Vector modules = discoverPlugins(className, filter);
for(int i=0; i<modules.size();i++){
String plugin = (String) modules.get(i);
Object loadedObject = createDynamicObject(plugin, paramTypes, params);
if(loadedObject = null){
loadedObjects.add(loadedObject);
by
else{
Debug.out('Failed to load plugin: " + plugin);
by
}
if(loadedObjects. isEmpty()){
// when ever we ask for a plugin if we return nothing teh program
// will bust
// there should always be a plugin to saticfy the query
// so we stop
Debug.out("'Can’t load at least one plugin using query: " + className_
+ " " + filter);
return null;
}
else{
return loadedObjects;
}
}
private static Object createDynamicObject(String className, Class[] _
paramTypes, Object[] params){
try{
//System.out.printIn(""Trying to load: " + className);
// get reference to the class
Class classRef = Class.forName(className);
if(paramTypes == null){
params = null;
+
Constructor constr = classRef.getConstructor(paramTypes);
Object newObject = constr.newlnstance(params);
if(newObject = null){
Debug.out("'Dynamicaly loaded: " + className);

APPENDIX D. SOURCE CODE 181

}

return newObject;

}

catch(Java. lang.ClassNotFoundException e){
System.out.printIn('Couldn’t find class: " + className);
return null;

}

catch(Java. lang.Exception e){
System.out.printin("Couldn’t dynamically load class: " + className);
return null;

}

}
private static boolean filterCmd(String filter, String item){

boolean result = false;
char command = filter.charAt(0);
Ffilter = filter.substring(1l);
if(command == ~17){
if(filter.equals(item)){
result = true;
}
else{
result
+
}
if(command == "=7){
if(filter.equals(item)){

false;

result = false;
}
else{

result = true;
}

}

return result;

+

private static Vector discoverPlugins(String classOfPlugin, String filter){
String rootPluginPath = "/usr/java/lib/classes/org/grid/plugins/modules/';
String classPathStub = "org.grid.plugins.modules.";
Vector foundModules = new Vector();

APPENDIX D. SOURCE CODE 182

File dir = new File(rootPluginPath);
// This filter only returns directories
FileFilter FileFilter = new FileFilter({
public boolean accept(File file) {
return file.isDirectory();
}
};
File[] dirs = dir._listFiles(fileFilter);
for (int i=0; i<dirs.length; i++) {
// Get filename of file or directory
String dirName = dirs[i].getName();
//System.out.printIn(""Found dir: " + dirName);
if(IFilterCmd(Ffilter, dirName)){
String pathToClass = rootPluginPath + dirName + File.separator + _
classOfPlugin;
String pathToClassFileName = pathToClass + *.class";
//System.out.printin(’'Modulle to look for is:" + pathToClassFileName);
File moduleFile = new File(pathToClassFileName);
if(moduleFile.exists()){
//System.out.printin('Could load: " + pathToClassFileName);
pathToClass = pathToClass.replaceAll(rootPluginPath, "'");
foundModules.add(classPathStub + pathToClass.replaceAll(File._
separator, "."));
}
}
}
return foundModules;
+
}

D.42 org.grid.security : SecurityManager

package org.grid.security;

import org.grid.mds.*;

import org.grid.mds.rgmb.*;

import org.grid.plugins.PluginManager;
import org.grid.plugins.modules.SecurityDefT;
import java.util.*;

APPENDIX D. SOURCE CODE 183

import org.grid.support.*;
public class SecurityManager{
public static boolean authenticate(String localSiteName, String _
userNameSitePair, String userPassword){
// usernames take the form of user@site
// but they are stored as user iIn the home mds with site as the parent_
node
StringTokenizer st;

try{
st = new StringTokenizer(userNameSitePair, "@");

}
catch(Java. lang.NullPointerException e){
Debug.out(THIS IS A FUCKUP - the user@site pair is munged (look for _
the @): " + userNameSitePair);
return false;
}
int numTokes = st.countTokens();
if(numTokes 1= 2){
Debug.out("'THIS IS A FUCKUP - the user@site pair is munged (look _
for the @): " + userNameSitePair);
return false;
}
String userName
String siteName
Debug. log(true,
siteName);
Stack dataStack = new Stack();
dataStack = Mds.addPairToStack(dataStack, 'userPassword', '"");
dataStack Mds.addPairToStack(dataStack, "userName', userName);
dataStack = Mds.addPairToStack(dataStack, "siteName', siteName);
Vector retrievedPasswordList;
boolean authenticatedOk = false;
if(Mds.checkLease((Stack)dataStack.clone())){
//Debug.out("'Good lease');
retrievedPasswordList = Mds.getFromCache(dataStack);
if('retrievedPasswordList.isEmpty()){
String retrievedPassword = (String) retrievedPasswordList.get(0);
//Debug.out('retrieved password: ' + retrievedPassword);
Debug.log(true, ''security', "Cache hit: " + userName + "@" +

st.nextToken();
st.nextToken();
'security’, "Authenticating " + userName + "@" +

APPENDIX D. SOURCE CODE 184

siteName);
if(userPassword.equals(retrievedPassword)){
authenticatedOk = true;

}
}

else{
Debug.log(true, "security', '"Cache miss: ' + userName + "@" +
siteName);

}
}

else{
if(siteName.equals(localSiteName)){

// its a local user so use the GSM for this site

//Debug.out('Using local gsm to get password™);

Vector gsms = PluginManager.loadPlugins(*'Security', "!remote'", null);

if(gsms == null){
// we couldnt load any security authentication modules which is bad
// nothing can be locally authenticated but remote authentication
// should work we cant test these passwords so we must bail out
// and return false
Debug.out(*'Couldn’t load any local authentication modules'™);

}
else{
// we got a vector of security modules we can use
// we loop through until the password is authenticated
// this means the behaviour is all local security modules are used
// one after the other - we are combining the authentication
// methods
for(int i=0; i<gsms.size(); i++){
SecurityDef gsm = (SecurityDef) gsms.get(i);
authenticatedOk = gsm.authenticate(siteName, userName, _
userPassword);
if(authenticatedOk){
// stop the loop now
i=gsms.size();
by
by
}

}

APPENDIX D. SOURCE CODE 185

}

else{

// this user isn’t one of ours, we need to do a remote password get
// from their site, this data will be cached in the standard way
Debug.out("'Going to do a remote fetch for the password'™);
SecurityDef gsm = (SecurityDef) PluginManager.loadPlugin_
('Security', ""=remote', null);
if(gsm==nul1){
Debug.out(**Couldn’t load the remote authentication module™);
}
else{
authenticatedOk = gsm.authenticate(siteName, userName, _
userPassword);

}

if(authenticatedOk){

// password was ok so cache it
cacheUserNameAndPassword(siteName, userName, userPassword);

if(authenticatedOk){
Debug.log(true, "'security', "Access granted for user: ' + userName _

+ "@" + siteName);

else{
Debug.log(true, "'security', "Access denied for user: " + userName _

+ "@" + siteName);

return authenticatedOk;

private static void cacheUserNameAndPassword(String siteName,

String userName, String userPassword){

Stack dataStack = new Stack();

dataStack = Mds.addPairToStack(dataStack, "userName', "');
dataStack = Mds.addPairToStack(dataStack, "siteName', siteName);
Mds.setCache((Stack)dataStack, userName);

dataStack
dataStack
dataStack
Mds.setCache((Stack)dataStack, userPassword);

= Mds.addPairToStack(dataStack, "userPassword", '"");
= Mds.addPairToStack(dataStack, '"userName'™, userName);
= Mds.addPairToStack(dataStack, ''siteName'™, siteName);

APPENDIX D. SOURCE CODE

186

D.43 procmon : ProcmonServer

import org.grid.support.Debug;
import org.grid.plugins.modules.procmon.serialised.*;
import java.rmi.*;
import java.rmi.registry.*;
public class ProcmonServer{
public static void main(String[] args) {
try {

Registry reg = LocateRegistry.createRegistry(1099);

MibImpl localObject = new Miblmpl();
reg.rebind("*Mib™, localObject);

}

catch(RemoteException re) {
System.out.printIn(""RemoteException: " + re);

}

+
}

