
J Supercomput (2007) 42: 83–106
DOI 10.1007/s11227-006-0034-z

Tycho: a wide-area messaging framework with an
integrated virtual registry

Mark A. Baker · Matthew Grove

Published online: 9 March 2007
© Springer Science+Business Media, LLC 2007

Abstract In a distributed environment remote entities, usually the producers or con-
sumers of services, need a means to publish their existence so that clients, needing
their services, can search and find the appropriate ones that they can then interact
with directly. The publication of information is via a registry service, and the interac-
tion is via a high-level messaging service. Typically, separate libraries provide these
two services. Tycho is an implementation of a wide-area asynchronous messaging
framework with an integrated distributed registry. This will free developers from the
need to assemble their applications from a range of potentially diverse middleware
offerings, which should simplify and speed application development and more im-
portantly allow developers to concentrate on their own domain of expertise. In the
first part of the paper we outline our motivation for producing Tycho and then review
a number of registry and messaging systems popular with the Grid community. In
the second part of the paper we describe the architecture and implementation of Ty-
cho. In the third part of the paper we present and discuss various performance tests
that were undertaken to compare Tycho with alternative similar systems. Finally, we
summarise and conclude the paper and outline future work.

Keywords Asynchronous messaging · Virtual registry · Distributed application ·
R-GMA · Globus MDS4 · NaradaBrokering · Performance evaluation

1 Introduction

Tycho is an implementation of a wide-area asynchronous messaging framework that
includes an integrated distributed registry. This combination allows Tycho to provide

M.A. Baker (�)
School of Systems Engineering, The University of Reading, Reading, RG6 6AY, UK
e-mail: Mark.Baker@Computer.Org

M. Grove
DSG, The University of Portsmouth, Portsmouth, UK

84 M.A. Baker, M. Grove

a range of key services for wide-area distributed applications that can essentially
publish and discover endpoints, as well as exchange information without the need
for the developer to use multiple libraries. Existing solutions typically use one of
many communication mechanisms, for example SOAP [1] or GridFTP [2] coupled
with a separate registry such as UDDI [3] or LDAP [4] to provide service discovery.
Tycho frees developers from the need to assemble their applications from a range
of potentially diverse middleware offerings, which will simplify and speed applica-
tion development and more importantly allow developers to concentrate on own their
domain of expertise.

1.1 Original motivation

The resource-monitoring framework, known as GridRM [5], has a distributed ar-
chitecture where information needs to flow between remote gateways. Rather than
reinvent a means of discovering and asynchronously transferring data between these
end-points, a mature package was sought. Two classes of software would typically be
used to solve this type of problem, a registry system, such as LDAP, and a messaging
system such as SOAP via Apache Axis.

A solution for the messaging part of the solution would be via some type Message-
Oriented Middleware (MOM) system. MOM typically operates in a layer between the
application and transport layers at both ends of a communication path. MOM is well
suited for applications requiring asynchronous messaging services, and for service-
based systems in general since it provides an abstract model for communication be-
tween services. MOM-based systems, however, typically do not include a registry
so that producers and consumers of the services can publish, search and bind with
each other; this is normally undertaken by a third-party registry, or it is assumed that
multi-cast is available, or is hardwired. To provide a full solution to our problem there
is also a need for a registry service that is flexible and could be adapted to provide
a generic system.

Even though the original motivation behind this project was to find and integrate
an exiting solution into GridRM, it became evident that most generic distributed ap-
plications have similar requirements. This has led us believe that there is a general
need for a system that provides a scalable registry and integrated wide-area messag-
ing support.

In addition, as the Open Grid Services Architecture (OGSA) gains increasing ac-
ceptance in the e-Science community, a system that combines MOM with a generic
registry will be a key aspect of these Service-Oriented Architectures (SOA). For ex-
ample, Pallickara et al. [6] have seen the usefulness of this approach, but have im-
plemented a fairly restricted registry. This type of combined system has so far not
received much attention. The main motivation for the research detailed in this pa-
per is to demonstrate how our framework, known as Tycho, can provide a combined
wide-area asynchronous messaging and registry system that can be incorporated into
a SOA for wide-area distributed applications.

Tycho: a wide-area messaging framework with an integrated virtual registry 85

2 Related work

In this section the most appropriate and popular systems used by the Grid community
to provide a registry and high-level messaging services are discussed. The first two
systems (MDS4 and R-GMA) have the capability to provide the registry services,
whereas the final system (NaradaBrokering) could potentially provide the messaging
service.

2.1 MDS4

The Globus Toolkit’s Monitoring and Discovery Service (MDS version 4) [7] is
a Web Services Resource Framework (WSRF) based implementation of a wide-area
information and registry service. MDS4 provides a framework that can be used to
collect, index and expose data about the state of grid resources and services. Typ-
ical uses for MDS4 include making resource data available for decision making in
job submission services or notifying an administrator when storage space is running
low on a cluster. MDS4 is open source and is distributed under the Apache 2 license,
which is an OSI compliant license.

MDS4 is made up of several components that replace MDS2, which was based on
LDAP. An aggregator framework, which currently consists of two services, provides
MDS4 functionality. The Index Service is used to collect and discover information
about resources and a Trigger Service, which can be configured to perform actions
based on resource information gathered. MDS4 provides a WSRF interface for clients
to query and subscribe to the information collected.

Figure 1 shows a client’s interaction with the MDS4. MDS4 uses a fixed schema
to ensure compatibility between its components; every participating MDS4 service
must be configured to use the same schema. The index information itself is stored
in memory. The Grid services are deployed in a Tomcat container using the Globus
Toolkit’s functionality, they can interact with clients written in Java, Python or C.
MDS4 is not used for messaging between system components, the Globus Toolkit
can be used to deploy grid services which use WSRF for communications, which are
based on Web Services using SOAP over HTTP.

Fig. 1 The architecture of the
globus toolkit with the two
MDS4 services highlighted

86 M.A. Baker, M. Grove

Fig. 2 The architecture of R-GMA

2.2 R-GMA (relational grid monitoring architecture)

R-GMA [8] is a Java-based implementation of the Grid Monitoring Architecture
(GMA) [9] that was originally developed within the European DataGrid Project [10]
for publishing network monitoring information over the wide-area and as an informa-
tion service. R-GMA uses a relational model to search, using an SQL-like API, and
describe the monitoring information it collects. It is based on a consumer/producer
paradigm with client data being stored in a directory service, which presents it as
a virtual database. R-GMA is now part of the Information and Monitoring work pack-
age of the EGEE project [11]. The current stable release of R-GMA (in gLite 1.5) is
based on Java servlets; a more advanced version is under development using Web
Services and SOAP for messaging. R-GMA uses the term tuples for sets of data be-
ing published or consumed. R-GMA can be used in conjunction with C++, C, Python
and Perl consumers and/or producers, as well as obviously with Java.

Figure 2 shows an example of a consumer performing a continuous query for tu-
ples published by a primary producer. The producer periodically publishes tuples to
the primary producer service, which stores them for a period specified by the pro-
ducer, this makes the tuples available for consumers to discover and consume. The
consumer sends a query to the consumer service, which uses the registry to create a
list of producers that can satisfy the query. The consumer service then sends a control
message to the producer service requesting the tuples. As the tuples are delivered to
the consumer service they are stored in a buffer for the consumer to collect. In the
example shown in Fig. 2, the producer service is using a MySQL database to store
published tuples and the consumer service is using in-memory storage to buffer the
tuples for its consumer. Messaging between R-GMA components is provide using a
customised Java NIO interface; this will be changed to SOAP over HTTP in a future
release. R-GMA is distributed in a binary form, but it is possible to access the source
code under the EGEE license, which is derived from a modified BSD license.

2.3 NaradaBrokering

The NaradaBrokering framework is a distributed messaging infrastructure, developed
by the Community Grids Lab at Indiana University [12]. NaradaBrokering is an asyn-

Tycho: a wide-area messaging framework with an integrated virtual registry 87

chronous messaging infrastructure with a publish and subscribe based architecture.
NaradaBrokering is Sun JMS compliant. This messaging standard allows application
components to exchange unified messages in an asynchronous system. The JMS spec-
ification is used to develop Message Orientated Middleware (MOM) and defines how
messages are to be communicated via queues or topics. Networks of collaborating
brokers are arranged in a cluster topology, with a hierarchy of clusters, super-clusters,
and super-super-clusters. It aims to provide a unified messaging environment that in-
corporates the capability to support Grid and Web Services, Peer-to-Peer and video
conferencing, within a SOA.

In NaradaBrokering, producers publish events belonging to a topic or subject, and
then consumers can subscribe to those of interest to them. Topics in NaradaBrokering
can be based on tag-value pairs, Integer and String values. In its simplest form these
topics are typically “/” separated Strings. When a publisher issues events on a specific
topic the middleware substrate routes the events to the subscribers that have registered
an interest in this topic. Clients can specify SQL queries on properties contained in
a JMS message. NaradaBrokering has a XML matching engine, which allows clients
to specify subscriptions in XPath queries and store advertisements in XML encapsu-
lated events. NaradaBrokering also provides a variety of transport protocols including
HTTP, TCP, NIO/TCP, UDP, and SSL.

Figure 3 shows how brokers can be arranged hierarchically to provide a scalable
messaging infrastructure. Each group of brokers is called a cluster, a cluster is a col-
lection of connected brokers, a super-cluster is a collection of clusters and a super-
super-cluster is a collection of super-clusters. The broker that is used for inter-cluster
routing is called a controller. The hierarchical cluster architecture is designed to in-

Fig. 3 The NaradaBrokering architecture showing communication between brokers, clusters of brokers
and super-clusters

88 M.A. Baker, M. Grove

crease the scalability of the system; each broker is identified by a unique logical ad-
dress, which is used to calculate a routing path through the network of brokers. Mul-
tiple routes can connect clients, brokers and clusters of brokers; each broker holds a
network map, which is used to calculate the cost of routing a message to its destina-
tion. NaradaBrokering does not have a built-in general-purpose registry, but the latest
release now has a topic and broker discovery service. NaradaBrokering is released
under the Indiana University Advanced Research and Technology Institute License.

2.4 Summary

There are obviously a large number of systems that can provide a registry system
or wide-area messaging services. In this section we have briefly described the archi-
tecture and functionality of the most popular systems used by the Grid community
today. Our investigation has shown that no one system currently can provide both the
registry and messaging functionality that we desire. In addition, there are a number
of features and issues with each of these systems that make them less then desirable
for our purposes (see the list below)—during the lifetime of the Tycho project these
features and issues have obviously changed. However, the motivation for developing
Tycho is still valid today, and can be summarised as:

• No one system provides both a scalable registry and messaging services—we be-
lieve this is a key factor that is novel and will ease application development.

• Each system discussed in this section is large and monolithic requiring expertise
to install, configure and use.

• Architecturally the registry systems will not scale to Internet proportions and be
able to cope with large number of resources and clients, without significant effort
and additional programming.

Since our investigation failed to find one solution that satisfies our needs we have
developed Tycho, which is an implementation of a wide-area asynchronous messag-
ing framework with an integrated distributed registry. In the next section we described
Tycho’s architecture.

3 Tycho’s architecture

Tycho is a Java-based framework based on a publish, subscribe and bind paradigm.
We believe that a registry/messaging system should have an architecture similar to
the Internet, where every node provides reliable core services, and the complexity is
kept, as far as possible, to the edges. This implies that the core services can be kept to
the minimum needed, and endpoints can provide higher-level and more sophisticated
services, that may fail, but will not cause the overall system to crash. The design phi-
losophy for Tycho has been to keep its core relatively small, simple and efficient, so
that it has a minimal memory foot-print, is easy to install, and is capable of providing
robust and reliable services. More sophisticated services can then be built on this core
and are provided via libraries and tools to applications.

This will enable Tycho to be flexible and extensible so that it will be possible to
incorporate additional features and functionality. Tycho’s functionality has all been

Tycho: a wide-area messaging framework with an integrated virtual registry 89

incorporated within a single Java JAR with the only requirement being a Java 1.5
JDK for building and running Tycho-based applications.

Tycho consists of the following components:

• Mediators that allow producers and consumers to discover each other and establish
remote communications,

• Consumers that typically subscribe to receive information or events from produc-
ers,

• Producers that gather and publish information for consumers.

In Tycho, producers and/or consumers (clients) can publish their existence in a di-
rectory service known as the Virtual Registry (VR). A client uses the VR to locate
other clients, which act as a source or sink for the data they are interested in. The VR
is a distributed service provided by a network of mediators. When possible, clients
communicate directly, however, for clients that do not have direct access to the Inter-
net, the mediator provides wide-area connectivity by acting as a gateway or proxy into
a localised Tycho installation. Figure 4 shows Tycho clients communicating between
two remote sites connected via the Internet.

The Tycho VR is made up of a collection of services that provides the management
of client information and facilitates locating and querying remote Tycho installations.
A client registers with a local mediator, part of the VR, when it starts-up. The VR
provides a locally unique name for each client and periodically checks registered
entities to ensure their liveliness, removing stale entries if necessary.

The VR consists of the following components, shown in Fig. 5:

• The transport handler allows different protocols to be used between Tycho pro-
ducers, consumers, mediators, and the VR. Currently, TCP sockets, HTTP, and
Internet Relay Chat are supported.

• The local store provides an abstract interface to a mediator’s information store.
The store itself can be implemented using a variety of data storage technologies.

Fig. 4 The architecture of Tycho

90 M.A. Baker, M. Grove

Fig. 5 A layered view of Tycho’s architecture

Currently Tycho provides a JDBC-based storage medium and an in-memory data
structure (simple store). JDBC permits the use of a range of SQL storage technolo-
gies ranging from Oracle to MySQL. The in-memory implementation is provided
to simplify the deployment, in situations where a JDBC-based database is unavail-
able.

• The query parser and result annotator components translate queries and responses
into an intermediate internal format in order to allow Tycho to support different
query languages and permit interoperability with other systems in the future. Tycho
currently supports a subset of the ANSI-SQL query language and LDIF [13] as
a response mark up.

Tycho’s VR provides:

• Information for uniquely identifying a client,
• URLs that are used by the transport handlers to locate and communicate with

a client,
• A schema field, which can be used to store information about the capabilities of

a producer or consumer.

When a mediator receives a query from a client, it performs a look up against
locally registered entities, and then potentially dispatches the query to the rest of the
VR. The local mediator requires a bootstrap service for locating other mediators and
a transport handler for dispatching queries. Together, these services are supported by
two protocols:

• HTTP: This interconnect uses a well-known server to maintain a list of exist-
ing mediators within the VR, which it uses to bootstrap a new mediator. Inter-
mediator communication is provided by the HTTP transport handler, which dis-
patches queries to remote mediators by sending messages serially to all mediators.
Currently, placing Tycho behind a proxy server configured to require authentica-
tion can restrict access to the HTTP-interconnect.

• IRC: This inter-connect uses a dynamic discovery process based on Internet Relay
Chat.

Tycho: a wide-area messaging framework with an integrated virtual registry 91

The HTTP connect is one that is commonly used; a novel alternative is the IRC
VR-interconnect, discussed next.

3.1 IRC VR-interconnect

IRC networks [14] typically have groups of servers connected in a graph topology,
which can be configured to route messages and provide fault tolerant capabilities.
For example, QuakeNet [15] can support many hundreds of thousands of clients si-
multaneously [16]. The IRC DNS servers can be bound to a pool of IRC servers to
provide load balancing based on server load and geographic location. A DNS query
will then respond with the address of a ‘suitable’ lightly loaded server. Alternatively,
by using a database of IP address prefixes, it can provide the address of a server that
is geographically close to the client. In the event that a server becomes unavailable,
DNS can be used to direct a client to available servers.

Tycho uses the combination of DNS records and the IRC servers to bootstrap
the VR. This provides the VR service with a measure of fault tolerance, as it avoids
a single point of failure, provides scalability and importantly by-passes the need to
install servers to provide the functionality required by Tycho. An IRC client (bot) is
then used by the VR to locate and communicate with other instances of the registry
within the VR.

Figure 6 illustrates the steps that a consumer goes through to discover a producer
using the IRC VR.

1. When the mediator is started, an IRC bot uses DNS information to locate a server
and joins

2. The IRC bot attempts to join a pre-determined IRC channel.
3. A consumer will register itself with its local mediator.
4. In this step:

(a) The consumer sends a query for producers to its local mediator.
(b) The IRC bot within the local mediator sends the query to the IRC server,

which broadcasts it to other bots associated with remote mediators.
(c) The query is run against the local data store at each mediator and matches are

sent back over IRC and delivered to the consumer.
5. The consumer communicates with the producer via the mediator, in this case using

a combination of sockets and HTTP.

Fig. 6 The steps a consumer takes to discover a producer using the IRC VR

92 M.A. Baker, M. Grove

IRC servers can be configured to use encryption to protect messages while in tran-
sit over the Internet. If a public IRC network is used for Tycho there are various
services provided to help prevent unauthorised access to the VR bots. The channel
through which the bots communicate can be password protected and bots can com-
municate using ‘private messages’, which the IRC network does not expose to other
parties. Higher levels of security can be provided with a private IRC network, which
allows the maximum amount of control over the security of the system, although it
also adds the administrative overhead of maintaining an IRC network.

3.2 Security

Security is an essential requirement for any distributed system. Tycho’s architecture
is designed to support both encryption and access control to provide a secure envi-
ronment. Encryption is provided at the transport handler level using SSL to encrypt
messages sent via the HTTP, Socket and IRC handlers. Access control is provided
using a layered approach. In keeping with the design philosophy of Tycho, we re-use
existing infrastructure. Access control is can be via the use of a proxy server, or the
security features of an IRC daemon. For instance, when deploying Tycho on a cluster
a common configuration uses a proxy server on the head node to control access to
mediators running on compute nodes. An alternative mechanism for access control
is provided by a pluggable authentication library, which could interface with existing
security protocols and solutions such as WS-Security or the Java Authentication and
Authorization Service (JAAS).

4 Performance tests

A performance study of Tycho against similar systems has been made. For the pur-
poses of evaluating Tycho’s messaging performance, comparative tests were made
with the NaradaBrokering system the performance of Tycho’s virtual registry was
compared to Globus MDS4 and to R-GMA.

4.1 Messaging performance: Tycho versus NaradaBrokering

Figure 7 shows two NaradaBrokering clients communicating over the Internet.
NaradaBrokering does not allow clients to communicate directly; at least one broker
is always required. This differs from Tycho in which messages are only routed via

Fig. 7 A high-level view of the
NaradaBrokering architecture

Tycho: a wide-area messaging framework with an integrated virtual registry 93

Table 1 System configuration
Processor type Dual Xeon (Prestonia)

Processor speed 2.8 GHz

Processor cache 512 K L2 Cache

Font side bus 533 MHz

RAM 2 Gbytes ECC

Storage 80 Gbytes EIDE

JVM Sun Java Version 1.5.0-b64

OS Debian Linux 3.1, Kernel 2.4.32

Mediators to facilitate wide-area communications. Two test configurations were used
to measure the message passing performance of Tycho and NaradaBrokering. A nine-
node cluster, see Table 1 for details, was used to perform the performance tests.
A Java sockets-based implementation of the ping-pong test was used to measure the
baseline communication performance. By comparing the measurements taken when
timing Tycho and NaradaBrokering with the baseline performance, it was possible to
analyse the overhead of sending and receiving messages for each system.

4.1.1 The ping-pong tests

The first test is used to assess end-to-end performance using a traditional ping-pong
benchmark to measure the round trip time to send and receive messages of varying
sizes between a single producer and consumer, and can be used to assess latency
and bandwidth. Two different arrangements of producers, consumers, and media-
tors/brokers were used to measure the latency and bandwidth for two different types
of communication:

• The performance of TCP-based communications over Fast Ethernet (LAN),
• The performance of communications using a combination of TCP (LAN) and

HTTP (WAN). This test measures the extra overhead of using mediators/brokers
in an arrangement typical for wide-area communications.

For each test the layout of NaradaBrokering and Tycho components where
matched as closely as possible in order to provide comparable results (see Fig. 8).
The main difference is that NaradaBrokering does not allow for direct communica-
tion between end-points; messages must flow between clients via a broker(s), which
handles the routing of messages. Conversely, clients in Tycho by-pass the mediator
and undertake direct communications over the host or LAN.

Figure 8 shows Tycho and NaradaBrokering configuration for the two the Ping-
Pong tests. In the first test (Fig. 8a and b) the consumer is run on one host and the
producer on another, they communicate over Fast Ethernet via sockets. The Tycho
consumer and producer communicate directly using sockets, only using the mediator
to bootstrap the test. The NaradaBrokering consumer and producer also use sockets
to send the messages, but these messages are routed via the broker.

In the second test (Fig. 8c and d) four hosts are used to allow components to be
arranged in a manner that would emulate typical WAN communications. Both Tycho
and NaradaBrokering components are arranged the same way: The consumer and
producer communicate with two separate brokers/mediators using sockets, and the
brokers/mediators communicate using HTTP.

94 M.A. Baker, M. Grove

Fig. 8 Test configuration of the PingPong tests

Fig. 9 Latency results

Latency and bandwidth (LAN) The latency results are shown in Fig. 9. Baseline
Java has a latency of less than 200 μs for messages <512 bytes after that it shows
a linear increase with message size. For messages <128 Kbytes, both Tycho and
NaradaBrokering show an additional fixed latency of around 1.2 millisecond over the
baseline Java’s performance. The difference between NaradaBrokering and Tycho
latency is negligible until 4 Kbytes; thereafter the difference between the systems
increases. At the 4 Mbyte message size, Naradabrokering is 59% slower than Tycho.

The bandwidth results are shown in Fig. 10. Baseline Java’s bandwidth utilisa-
tion peaks at 11.5 Mbytes/s. The bandwidth achieved by NaradaBrokering and Ty-
cho, for messages <8 Kbytes, is approximately 55% of that of baseline Java. Af-
ter this point, Tycho’s bandwidth continues to increase and plateaus 10.9 Mbytes/s;
whereas NaradaBrokering peaks at 7.3 Mbytes/s. Thereafter the bandwidth achieved
by NaradaBrokering gradually falls off, whereas Tycho stays approximately constant.

Tycho: a wide-area messaging framework with an integrated virtual registry 95

Fig. 10 Bandwidth results

Latency and bandwidth (WAN) For messages <16 Kbytes, there is a constant 5
millisecond difference in latency between Tycho and NaradaBrokering using HTTP,
the latter being the slower. At the 128 Kbyte message size both systems display the
same latency. The maximum bandwidth for both Tycho and NaradaBrokering using
HTTP communications for messages is similar and the maximum attained is around
about 26% of the maximum achievable.

4.1.2 Scalability tests

The scalability tests were designed to measure the performance of Tycho and
NaradaBrokering as the number of producers or consumers is increased. In both
tests, the single consumer/producer and mediator/broker are started on separate nodes
within the test cluster, with the remaining nodes used to run clients. Initial exper-
iments showed us that fourteen clients are sufficient to saturate the Fast Ethernet
network (see Fig. 11).

Many producers This test measures the affect on a consumer receiving messages
from an increasing number of producers. The results from this test show the maxi-
mum number of messages per second a consumer can receive before the performance
falls off.

The results from these benchmarks are shown in Fig. 11. With one consumer, and
multiple producers (1–14), for messages ≤ 256 bytes, both Tycho and NaradaBro-
kering achieve a maximum bandwidth of approximately 9.5 Mbits/sec. Tycho peaks
at 90.4 Mbits/sec. Whereas NaradaBrokering peaks at 84.2 Mbits/sec, with one pro-
ducer, as the number of producers increases the bandwidth falls to 15.2 Mbits/sec for
14 producers.

In Tycho the bandwidth of a single producer is inhibited until message sizes are
large enough to saturate the network. This is because a socket is created for each
message sent and the rate that sockets can be created is limited. When more producers
are used sufficient messages can be sent to saturate the receiver. NaradaBrokering
reuses sockets, so it is not affected by this limit. It was observed that, with the default
JVM heap size of 512 Mbytes, when using five producers, each sending 16 Kbytes

96 M.A. Baker, M. Grove

Fig. 11 Many producers (1–14)—single consumer, bandwidth versus message length

messages that NaradaBrokering runs out of heap space. By increasing the maximum
heap size up to 1.5 Gbytes the tests could be completed. The Tycho heap size was left
as the default.

Many consumers This test measures the performance of a single producer sending
messages to varying numbers of consumers. The results from this test show how the
performance of a producer is affected, as it sends messages to an increasing number
of consumers.

The results from these benchmarks are shown in Fig. 12. The bandwidth of Tycho
and NaradaBrokering increase steadily as the message size increases until 16 Kbytes.
The bandwidth peaks at 1 Mbyte with a bandwidth of 88.5 Mbit/s. The available
bandwidth is divided between the consumers, which means as the number of con-
sumers increases the bandwidth proportionately decreases.

As with the producer tests, the heap size for NaradaBrokering had to be increased
to 1.5 Gbytes to run the tests, however NaradaBrokering exhausts the heap with three

Tycho: a wide-area messaging framework with an integrated virtual registry 97

Fig. 12 Many consumers (1–14)—single producer, bandwidth versus message length

consumers receiving 1 Mbyte messages. We were unable to increase the heap further
due to memory limits on the test cluster.

4.1.3 Summary

Latency and throughput When looking at end-to-end performance, on a LAN for
messages less than 2 Kbytes, Tycho and NaradaBrokering have comparable perfor-
mance. Here Tycho achieves 95% of the maximum bandwidth, whereas NaradaBro-
kering uses 65.3%. The peak bandwidth achieved by Tycho using HTTP was 27% of
the maximum attainable and NaradaBrokering achieved a maximum of 26%. Overall,
the performance of NaradaBrokering and Tycho is not that different. Tyco’s current
performance is inhibited by the fact that it creates a new socket for each message
send, whereas NaradaBrokering reuses sockets instances once they have been cre-
ated. Incorporating such as scheme in Tycho will further reduce its latency.

Scalability summary The scalability tests have shown Tycho and NaradaBroker-
ing producers and consumers to be stable under heavy load although performance

98 M.A. Baker, M. Grove

is weaker when there is a large ratio of consumers to producers. The heap size for
NaradaBrokering becomes a limiting factor in circumstances where a broker is re-
ceiving messages faster than it can send them, as the internal message buffer fills until
the heap is consumed. This problem could be avoided by implementing a flow control
mechanism. The Tycho tests were performed without modifying the heap size, this is
because the way it is implemented prevents messages from being received faster than
they can be sent, as there is limited buffering.

4.2 Registry performance tests: Tycho compared to R-GMA and MDS4

We tested Tycho against R-GMA and MDS4 in order to show that our philosophy of
keeping the core functionality as simple as possible yields performance gains over
these systems while still supporting the registry functionality required. In Tycho,
more complex functionality is added to the edge of the implementation rather than
by increasing the complexity of the core, thus is it is essential that the core perform
well.

Tycho, MDS4 and R-GMA all use different terminology to describe the same func-
tional components. In the following sections we use the label ‘registry’ to refer the
collection of services each system uses to provide registry functionality. For Tycho
this is the mediator, for MDS4, the container running the services and for R-GMA
the Tomcat container running the registry and schema servlets. We call programs
interacting with the registry ‘clients’.

For the tests we created a set of randomly generated strings to act as attributes
for records to be inserted into the registries. A single record, with no mark up, had
an average size of 114 bytes. Two tests were used to assess the performance of the
registries.

• The first test [S1] simulates a client searching the registry for records matching
some known attributes. Systematic queries are generated using a function to select
a record name at random from the test data to guarantee the query will only match
one record. In Tycho this is specified using the following SQL: SELECT � FROM
clients WHERE name=‘randname’;

• The second test [S2] measures the worst-case scenario of the client requesting all
of the records from within the registry. In Tycho this query is specified using the
following SQL: SELECT � FROM clients;

By configuring the Tycho core VR services, described in Sect. 3.1, and arrang-
ing these components in different ways we have been able to test the performance of
the Tycho’s VR under variety of different circumstances and compare it to the per-
formance or MDS4 and R-GMA. Figure 13 shows the configuration for each Test 1
and 2.

The cluster detailed in Table 1 was used for these tests. Sun’s JVM ver-
sion 1.5.0-b64 was used for Tycho (0.7.3) and MDS4 (Globus 4.0.1), R-GMA (gLite
1.5) requires Sun JVM 1.4.2 06. All three systems were run with their security fea-
tures disabled.

In Test 2 the clients and registries were evenly distributed using a round-robin
approach between the compute nodes. The cluster was monitored using Ganglia to
provide information such as memory use. Each test was repeated 10,000 times and the

Tycho: a wide-area messaging framework with an integrated virtual registry 99

Fig. 13 Configuration of Test 1
and Test 2

Fig. 14 Query response time versus the number of records for query when selecting a single random
record from the registry (S1)

benchmarks were written so that the time to bootstrap the test did not interfere with
the measurements being gathered. For Tycho, the JVM was invoked with no com-
mand line options, for MDS4 and R-GMA when the default heap size was exhausted
the tests were repeated using up to a maximum heap of size 1.5 Gbytes.

4.2.1 Test 1

This test simulates a client searching the registry for records matching some known
attributes. The number of records published into a single registry on one cluster node
was varied from 10 to 100,000. A client on a second cluster node queried the registry
using the two different types of queries (S1 and S2). The test aims to measure the
performance of the different registries with increasing numbers of records. The time
to complete each query was recorded.

In Fig. 14 a single random record is being selected from a registry (S1), while the
number of record in the registry is increased. Tycho has a constant response time of

100 M.A. Baker, M. Grove

Fig. 15 Query response time versus the number of records for a query that selects all the records from the
registry (S2)

3.5 ms; for up to 100,000 records HSQLDB has a constant overhead for this sim-
ple query. R-GMA has a fixed query time of 1400 ms up to 20,000 records at which
point it increases steadily to 2314 ms for 100,000 records. Unlike R-GMA and Ty-
cho, MDS4 response time increases with every extra record. It starts with a query
time of 21.06 ms for 10 records and increases steadily to 5095 ms for 4000 records.
After 4000 records the Globus container executing the MDS4 services gave an out of
heap error with the heap size set to the maximum supported by the test hardware of
1.5 Gbytes.

The results in Fig. 15 uses the same registry data as the previous test, but the
query executed selects all of the records in the registry (S2). Both Tycho and MDS4
have a constant increase in response time in relation to the number of records with
Tycho increasing by around 0.08 ms per record and MDS4 1.93 ms. R-GMA has a
constant response time of approximately 1462 ms for up to 2000 records, this can
probably be attributed to some kind of fixed cost in the implementation. After this
point the response time increases steadily up to 42,871 ms for 100,000 records, which
is 32,973 ms more than Tycho. It is interesting to note that the curves for MDS4, for
both types of query, track each other closely. The difference increases from 71.6 ms
for 100 records, up to 6208 ms for 4000 records. We believe this is because the
network latency has a greater impact for the larger response size associated with the
select all query.

Tycho: a wide-area messaging framework with an integrated virtual registry 101

Fig. 16 Query response time
versus the number of clients
querying a single registry
instance

4.2.2 Test 2

In this test the three registries were loaded with 1000 records and the number of
clients performing simultaneous queries was varied from 1–1000. The registry was
run on one node and the clients were evenly distributed amongst the eight other nodes.
This test measured the effect of increasing the number of simultaneous queries on a
single registry; it attempts to show how well a single registry copes with increasing
numbers of local clients. The time to complete a query was measured.

Figure 16 shows the relationship between the query response times as the number
of concurrent clients that query a single registry increases. For Tycho the response
time increases by on average 2.3 ms per additional client. The response time for
MDS4 on average 14,077 ms higher than Tycho, and for each additional client costs
approximately 655 ms. R-GMA has an added 20,094 ms latency over Tycho for the
same number of clients (6016 ms higher than MDS4) with 989 ms added to the re-
sponse for every additional concurrent client. When testing R-GMA, after 150 clients
the registry servlet crashed with an out of stack memory error that prevented us from
completing the tests up to 1000 clients. We believe this is due to the rapid creation
and destruction of the R-GMA consumers, the test code selects a random record per
iteration and in R-GMA a new consumer must be created to run a different query.

Registry summary When testing the affect of the number of records on response
time, we see that when selecting a single record from 100,000, Tycho responds
32 seconds faster than R-GMA. MDS4 runs out of heap space for larger records
sizes, which suggests that they should look at either storing the data more efficiently

102 M.A. Baker, M. Grove

or moving to a file-backed store that is not limited by heap size. The results of test-
ing the Tycho stores using HSQLDB, MySQL and the Simple Java store show that
HSQLDB performs best (see [16] for details). Perhaps R-GMA should consider using
HSQLDB instead of MySQL too.

In the multiple client tests, Tycho’s VR had a lower response latency than R-GMA
and MDS4. With 100 clients Tycho was 94 seconds faster than R-GMA and 65 sec-
onds faster than MDS4. The results highlight that one of the strengths of our imple-
mentation is its performance under load. Tycho’s performance is linear with regard to
both increasing numbers of clients and response sizes. MDS4 uses a global schema
that must be consistent in every MDS4 instance for interoperability, this reduces its
flexibility. R-GMA is the closest match to Tycho’s architecture although it does not
allow for the same level of flexibility with regard to the data it can store, as the
schema is global to the R-GMA system and must be configured before records can
be inserted.

4.2.3 Test 3

In this test a single Tycho client on one node queried the whole VR for a single record.
The VR was made up of 1–1000 mediators evenly distributed on the compute nodes.
Each mediator contained 1000 records so as the number of mediators increased so did
the total size of the VR, reaching a maximum of 100,000 total records when using
1000 mediators. This test measures the performance of the Tycho VR as the number
of mediators in the system is increased. We tested the two different VR interconnect
protocols, IRC and HTTP, with caching on and off. The average response time for a
query was measured.

Figure 17 shows the configuration of Test 3—in this test the consumer and the
IRC daemon where located on one node, and the registry/mediator instances were
gradually increased in a round-robin fashion on the other nodes. Figure 18 shows the
affect on response time as the number of mediators and records in the VR is increased.
For HTTP (no caching) an extra 1.24 ms is added per new mediator. This performance
is attributed to the serial way the HTTP dispatches queries to other mediators. With
IRC (no caching) until 500 mediators (50,0000 records) each extra mediator and 1000
records add on average 0.41 ms to the response time. The peak at 500 mediators for
IRC (no caching) marks the point where the test cluster consumed its available RAM
and started to use swap space. The marked difference between the performance of
IRC and HTTP is mainly because queries are sent to the mediators in parallel by
the IRC daemon as opposed to serially for HTTP. IRC (caching on) has the lowest
average response time adding approximately 0.13 ms for each extra mediator.

VR interconnect summary The IRC interconnect performed better when routing
queries between mediators than HTTP. For 1000 mediators, the response time was

Fig. 17 Configuration of Test 3

Tycho: a wide-area messaging framework with an integrated virtual registry 103

Fig. 18 Query response time
versus the number of Tycho
mediators

778 ms faster, and with caching on, the latency was reduced by a further 220 ms. The
HTTP interconnect could be improved by sending queries to mediators in parallel
and the IRC-interconnect could be further improved by using multiple IRC channels
to provide a network overlay to allow more efficient message routing. The HTTP-
interconnect can perform better than IRC as message response size increases. This
is a result of the IRC having to fragment the response into multiple messages due
to limitations of the IRC protocol. One solution to overcome these issues would be
to use a hybrid VR-interconnect using a combination of transport handlers to exploit
the strengths of the different approaches, i.e. using IRC to route queries and HTTP to
deliver responses over a certain size.

5 Summary and conclusions

5.1 Summary

In this paper we first outline our needs and the motivation for developing a system that
provides integrated asynchronous messaging and a distributed registry. The architec-
ture and main features of the most popular systems used for messaging (NaradaBro-
kering) and as registries (MDS4 and R-GMA) were discussed. We then described
architecture and features of Tycho, our implementation of a wide-area asynchronous
messaging system that includes an integrated distributed registry. In order to justify
the use of Tycho we then presented extensive performance tests against NaradaBro-
kering, MDS4 and R-GMA. These tests show that Tycho has comparable, if not bet-
ter, performance and capabilities then these more matures system.

104 M.A. Baker, M. Grove

5.2 Conclusions

We designed Tycho to have a relatively small, simple and efficient core, so that it
has a minimal memory footprint, is easy to install, and is capable of providing robust
and reliable services. More sophisticated services can then be built on this core and
are provided via libraries and tools to applications. This provides us with a flexible
and extensible framework where it is possible to incorporate additional feature and
functionality, which are created as producers or consumers, and do not affect the core.
Tycho’s functionality has all been incorporated within a single Java JAR and requires
only Java 1.5 JDK for building and running applications.

Tycho performance is comparable to that of NaradaBrokering, a more mature sys-
tem. Certain features of NaradaBrokering are superior to those of Tycho, but its mem-
ory utilisation and indirect communications are limiting features. Whereas, compared
to MDS4 and R-GMA, Tycho shows superior performance and scalability to both
these systems. In addition, we would argue that both MDS4 and R-GMA have prob-
lems with memory utilisation and without significant extra effort limited scalability.

NaradaBrokering and R-GMA currently have a richer functionality and features
than Tycho, including support for various Web Services specifications, and Grid
APIs. Additional APIs and specifications can be easily incorporated into Tycho by
simply creating compliant producers and consumers. An important advantage of Ty-
cho’s architecture is that addition of further producers/consumers will not affect its
core, or existing producers/consumers.

5.3 Future work

Tycho is being used in several projects including GridRM and the Semantic Log
Analyser [17] project at Portsmouth. In addition, Tycho is being used to provide
service discovery for the VOTechBroker [18], which is part of the European Virtual
Observatory [19] project. The Virtual Observatory allows astronomers global access
via a web portal to various astronomical data archives. The VOTechBroker facilitates
the use of existing infrastructure to execute jobs submitted through a web interface.
Participating sites publish capabilities, such as the batch submission details via a
Tycho producer; the VOTechBroker uses a Tycho consumer to discover the remote
resources and uses the capabilities published via Tycho to select a site to submit
the jobs. We expect the process of integrating Tycho with other systems such as the
VOTechBroker will lead to the development of more sophisticated tools and services,
such as aggregate and multi-threaded producers.

Even though Tycho’s registry performance is better then both MDS4 and R-GMA,
there are still a number of areas that we feel could be improved. One way to improve
performance is altering caching in the mediator to include local data-store queries in
addition to remote responses. In addition, the message-passing performance could be
improved by changing the socket transport handler to use thread pooling to further
reduce the cost of sending messages. In the future, we will add functionality into
Tycho to provide services that are more advanced. One key area is to develop trans-
port handlers that support SSL sockets or HTTPS to provide secure communication.
Other features may include support for transactions, various Web Services specifi-
cation, for example WS-notification, and producers/consumers that are suitable for
computational steering.

Tycho: a wide-area messaging framework with an integrated virtual registry 105

Tycho [20] is currently available as a binary release to developers interested in
investigating and further enhancing its capabilities.

References

1. SOAP. http://www.w3.org/TR/soap/
2. GridFTP. http://www.globus.org/toolkit/docs/4.0/data/gridftp/
3. UDDI. http://www.oasis-open.org/committees/uddi-spec
4. OpenLDAP. http://www.openldap.org/
5. Baker MA, Smith G (2003) GridRM: an extensible resource management system. In: Proceeding of

the IEEE international conference on cluster computing (Cluster 2003), Hong Kong, 1–4 December
2003. IEEE Computer Society Press, ISBN 0-7695-2066-9, http://gridrm.org

6. Pollickara S, Fox G, Gadgil H (2005) On the creation and discovery of topics in distributed pub-
lish/subscribe systems. In: Proceedings of the IEEE/ACM grid 2005 workshop, Seattle, WA, pp 25–
32

7. Schopf J et al (2005) Monitoring and discovery in a web services framework: functionality and
performance of the globus toolkit’s MDS4, ANL Tech Report ANL/MCS-P1248-0405, April 2005,
http://www-unix.globus.org/toolkit/mds/

8. Cooke AW et al (2004) The relational grid monitoring architecture: mediating information about the
grid. J Grid Comput 2(4). http://www.r-gma.org/

9. GMA. http://www-didc.lbl.gov/GGF-PERF/GMA-WG/
10. DataGrid. http://eu-datagrid.web.cern.ch/eu-datagrid/
11. EGEE. http://public.eu-egee.org/
12. Pallickara S, Fox G (2003) NaradaBrokering: a middleware framework and architecture for enabling

durable peer-to-peer grids. In: Proceedings of ACM/IFIP/USENIX international middleware confer-
ence middleware-2003, lecture notes in computer science 2672. Springer, pp 41–61, ISBN 3-540-
40317-5. http://www.naradabrokering.org/

13. RFC 2849—The LDAP Data Interchange Format (LDIF). http://www.faqs.org/rfcs/rfc2849.html
14. RFC 1459—Internet Relay Chat Protocol. http://www.faqs.org/rfcs/rfc1459.html
15. QuakeNet. http://irc.netsplit.de/networks/
16. Baker MA, Grove M (2006) A virtual registry for wide-area messaging. In: Proceeding of the IEEE

international conference on cluster computing (Cluster 2006), Barcelona, Spain, September, 2006,
ISBN: 1-4244-0328-6

17. Slogger. http://dsg.port.ac.uk/projects/slogger/
18. VOTechBroker. http://dsg.port.ac.uk/projects/votb/
19. European Virtual Observatory. http://euro-vo.org/
20. Tycho: a resource discovery framework and messaging system for distributed applications. http://acet.

rdg.ac.uk/projects/tycho/

106 M.A. Baker, M. Grove

Mark Baker is a Research Professor of Computer Science at the University of Reading in the School of
Systems Engineering. Mark is involved in the research and development of various middleware technolo-
gies for Clusters, the Grid, and Wireless Sensors Networks. Mark has published widely in journals and
conferences on his research interests, which include all aspects of distributed systems. Mark is a senior
member of the IEEE Computer Society and is involved many IEEE activities and events.

Mat Grove is a Post Doctoral Research Assistant within the Centre for Advanced Computing and Emerg-
ing Technologies (ACET) at the University of Reading in the School of Systems Engineering. Mat’s re-
search interests include messaging in distributed systems, wide-area systems monitoring, server virtuali-
sation and wireless sensor network technologies.

	Tycho: a wide-area messaging framework with an integrated virtual registry
	Abstract
	Introduction
	Original motivation

	Related work
	MDS4
	R-GMA (relational grid monitoring architecture)
	NaradaBrokering
	Summary

	Tycho's architecture
	IRC VR-interconnect
	Security

	Performance tests
	Messaging performance: Tycho versus NaradaBrokering
	The ping-pong tests
	Latency and bandwidth (LAN)
	Latency and bandwidth (WAN)

	Scalability tests
	Many producers
	Many consumers

	Summary
	Latency and throughput
	Scalability summary

	Registry performance tests: Tycho compared to R-GMA and MDS4
	Test 1
	Test 2
	Registry summary

	Test 3
	VR interconnect summary

	Summary and conclusions
	Summary
	Conclusions
	Future work

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

