
A Scalable Registry Service for jGMA

Distributed Systems Group, University of Portsmouth
Mark Baker and Matthew Grove

[mark.baker@computer.org, matthew.grove@port.ac.uk]

Abstract

jGMA is a Java-based wide-area message passing framework designed to be a reference implementation

of the GGF’s Grid Monitoring Architecture. jGMA clients require a scalable, fault tolerant mechanism

for joining and querying the distributed network; the so called jGMA Virtual Registry. In the first half

of this paper we briefly outline the current jGMA architecture, and then move on to describe the re-

quirements and design of the Virtual Registry; including here a description of how we intend to use P2P

technologies to provide the required functionality.

1 Introduction

jGMA [1] is a pure Java reference implementation of the GGF’s GMA [2], which represents the character-
istics required for a scalable grid-based monitoring infrastructure. In this model, producers or consumers
that accept connections publish their existence in a directory service (registry). Producers and consumers
can then both use the registry to locate parties, which will act as a source or destination for the data they
are interested in.

Our motivation for developing jGMA, is described elsewhere [3][4], but can be summarised by saying
existing systems where either embedded into larger software packages, such as the MDS in the Globus
Toolkit [5], and Network Weather Service [6], and were deemed difficult to breakdown into a standalone
version needed for our purpose. R-GMA [7] and pyGMA [8], two standalone GMA implementations were
considered, but both were less than ideal for our purpose; the drawbacks are discussed elsewhere [9].

2 The jGMA Architecture

Our reference implementation of GMA a has number of idealised features, including complying with the
GMA specification, being capable of scaling from LAN to WAN proportions, and across thousands of
sites with millions of producers/consumers, supporting both non-blocking and blocking events and having
the capability to take advantage of TLS [10] and/or the GSI [11]. In addition, we wanted the actual
implementation to have a small and well-defined API, a minimal number of other installation dependencies,
be easy to install and configure, have a minimal impact on its hosts, good performance and be capable of
working through firewalls.

jGMA consists of three entities:

1. Mediators that permit producers and consumers discover each other and allow remote communica-
tions,

1



2. Consumers,

3. Producers.

The focus of this paper is on the development of the registry services within the mediator component,
which allow consumers and producers to discover and communicate with each other over the wide-area.
Figure 1 shows the registry components within the jGMA architecture [4].

Registry

Consumer

Mediator

Registry

Stores

RDB

Client Ping Service

Mediator

Cache

Comms Boot

Registry

Core

Virtual Registry

Producer

Consumer

Mediator

Producer

Core

Local RemoteApplication

WAN
(HTTP)

LAN
(Socket)

ComputerMediator

WAN
(P2P)

Figure 1: The jGMA architecture - highlighting the Virtual Registry components.

3 The jGMA Virtual Registry

A simple volatile data store was initially implemented in jGMA; this only stores information about clients
that are connected directly to the mediator. The new Virtual Registry (VR) component within the mediator
needs to provide discovery, naming, and querying services for jGMA clients. For the VR we need mech-
anisms to allow the registry components to locate and query, over the wide-area, the localised data stores
within other mediators to form a virtualised registry.

Virtual Registry requirements:

• Be scalable,

• Store sufficient information to be GMA compliant,

• Be secure, and prevent unauthorised access to the data,

• Need minimal configuration,

2



• Ideally have no single point of failure,

• Be robust and tolerant of network failure,

• Efficient query routing between VRs.

The VR architecture provides two pluggable layers; one allows the use of different implementations of
local data storage, for example using text files, a relational database such as MySQL [12] or an XML
database such as Xindice [13]. The second layer allows different protocols to be used for communications
between components in the VR; we are exploring the use of Peer-to-Peer (P2P) technologies to provide a
distributed database.

3.1 Virtual Registry Design

The VR provides three core services: service discovery, querying, and caching. It should be noted that
not all P2P systems provide all three services, so some generic jGMA services are needed to provide the
missing functionality. Implementing these services as separate modules makes it possible to try different
implementations of each service without having to redesign the other services. A feature of this approach
is interoperability with other systems, should a standard protocol be adopted for monitoring information
on the Grid, it would be possible to connect jGMA without redesign or significant refactoring.

1. Service discovery: This is the process by which the registry component within a mediator locates
other registries to form the VR. The more this mechanism relies on centralised services, the greater
the likelihood of a failure in the discovery process. For example, one solution is to contact a well-
known server to get a list of existing VRs; this is not a scalable or fault tolerant approach. We require
a more dynamic discovery process, which does not rely on so called hardwired addresses to work.
We are currently assessing the suitability of existing P2P communications protocols for providing
mediator discovery and inter-VR communications.

2. Distributed querying: Once the VR has been joined, queries can be despatched and routed through
the VR infrastructure in an efficient manner. The VR network topology must be self-healing, by
this we mean that should one or more of the registries fail; it should have a minimal affect on the
overall performance of the VR. The VR network topology should aim to reduce the number of hops
required to traverse the network in order to minimise the time required to propagate a search query.
The design of the VR infrastructure will allow us to experiment with different network topologies
and P2P protocols, such as Gnutella [14].

3. Caching: Using cached registry queries reduces the number of queries sent over the wide-area to
other registries. A cache hit will allow the VR to respond immediately to the query rather than
having to wait for a remote query to complete. Caching also provides some fault tolerance during
transient faults with either the WAN connectivity or remote registries. Issues of data consistency will
have to be dealt with at this level too.

4 Summary and Conclusions

In this paper we have described the requirements for a distributed registry service for jGMA. We have
outlined the design for a pluggable registry framework for jGMA, which will allow us to explore how best

3



to leverage existing P2P technologies to create a scalable, robust Virtual Registry. We currently support
SQL as a query language and LDIF [15] as a response mark up. The VR has a layer of abstraction, which
translates queries and responses into an intermediate format internally, this allows us to add support for dif-
ferent query languages, such as XPATH [16], to permit interoperability with other GMA implementations
in the future.

In order to demonstrate the capabilities of the jGMA framework we are intend to develop a library for online
distributed gaming, which has become increasingly popular with the widespread uptake of broadband.
Games publishers have each tried to provide an infrastructure to support their online games. We Believe
there is an opportunity to develop a standard services, based on a jGMA, to support these games [17].

An early binary version of jGMA [18] is currently available for developers interested in investigating and
further enhancing its capabilities. jGMA has been repeatedly benchmarked throughout its development,
the latest results are presented in [3].

References

[1] jGMA, http://dsg.port.ac.uk/projects/jGMA/

[2] GMA, http://www.ggf.org/documents/GFD/GFD-I.7.pdf

[3] Wide-Area Resource Monitoring using GridRM and jGMA, M.A. Baker, G. Smith and M. Grove,
submitted to a special issue of the International journal Concurrency and Computation: Practice and
Experience, Malcolm Atkinson, Simon Cox, Ian Sommerville, and David Walker (eds), Wiley and
Sons ltd., January 2005, ISSN 1040-3108

[4] jGMA: A lightweight implementation of the Grid Monitoring Architecture, M.A. Baker and Matthew
Grove, UK e-Science All Hands Meeting, September 01-03 2004

[5] Globus MDS, http://www-unix.globus.org/toolkit/mds/

[6] Network Weather Service, http://nws.npaci.edu/NWS/

[7] R-GMA, http://www.r-gma.org/

[8] pyGMA, http://www-didc.lbl.gov/pyGMA/

[9] jGMA: A lightweight implementation of the Grid Monitoring Architecture , UKUUG LISA/Winter
Conference, February 2004

[10] TLS, http://www.ietf.org/html.charters/tls-charter.html

[11] GSI working Group, https://forge.gridforum.org/projects/gsi-wg

[12] MySQL, http://www.mysql.com/

[13] Xindice, http://xml.apache.org/xindice/

[14] Gnutella, http://www.gnutella.com/

[15] RFC 2849 - The LDAP Data Interchange Format (LDIF) - Technical Specification, Gordon Good,
http://www.faqs.org/rfcs/rfc2849.html, June 2000

[16] XPATH, http://www.w3.org/TR/xpath

[17] jGMA: A Reference Implementation of the Grid Monitoring Architecture, Progression from MPhil
to PhD Document, http://dsg.port.ac.uk/˜mjeg/docs/progression report2004.pdf, October 2004

[18] jGMA Download, http://dsg.port.ac.uk/projects/jGMA/software/

4


	1 Introduction
	2 The jGMA Architecture
	3 The jGMA Virtual Registry
	3.1 Virtual Registry Design

	4 Summary and Conclusions
	References

