
jGMA: A Reference Implementation of the Grid
Monitoring Architecture

Distributed Systems Group, University of Portsmouth
End of First Year Report

Matthew Grove (matthew.grove@port.ac.uk)
Mark Baker (mark.baker@computer.org)

Registration Period
01 October 2003 to 30 September 2004

Table of Contents

Table of Contents 1

1 Introduction 1

1.1 General Introduction . 1

1.2 Motivation . 3

1.3 GMA . 3

1.4 Summary . 5

2 Similar Work 6

2.1 Standalone Implementations . 6

2.1.1 R-GMA (Relational Grid Monitoring Architecture) 6

2.1.2 pyGMA (Python GMA) . 7

2.2 Embedded GMA Implementations . 8

2.3 Summary . 9

3 jGMA Design Criteria 10

3.1 Introduction . 10

3.2 The jGMA Architecture . 11

3.2.1 jGMA Components . 11

3.3 Example WAN Communications . 13

1

3.4 The initial jGMA Implementation . 14

3.4.1 RMI . 15

3.4.2 Sockets (LAN) . 15

3.4.3 HTTP (WAN) . 16

3.4.4 Objects . 16

3.4.5 Naming . 17

3.4.6 The Registry . 17

3.5 The jGMA First Release . 18

3.5.1 Benchmarks . 18

3.5.2 Results . 19

3.6 The Revised jGMA Implementation . 20

3.6.1 Event Driven API . 20

3.6.2 Revised Naming . 21

3.6.3 Client and Servlet Liveliness . 24

3.7 Summary . 24

4 jGMA web-cam demo 26

4.1 The Design . 27

4.1.1 The Architecture . 27

4.1.2 The Web-cam GUI . 28

4.1.3 The Web-cam Implementation 28

4.1.4 A jGMA web-cam Producer and Consumer 29

4.1.5 Writing the Interface . 30

4.2 Summary . 30

4.2.1 Problems with the Current Implementation 31

4.2.2 Future Work . 32

2

5 Conclusions and Future Work 33

5.1 Summary of Immediate Research Goals 33

5.2 Future Research Directions . 34

5.2.1 Soft-state PC Servlet to Registry Leasing 34

5.2.2 jGMA Monitoring . 35

5.2.3 The Virtual Registry (VR) . 36

5.2.4 Standalone jGMA . 37

5.2.5 The New Challenges for the Proposed Architecture 37

5.2.6 Summary . 40

5.3 Security . 40

5.3.1 Encrypted Communications . 40

5.3.2 Authentication and Access Control 40

5.3.3 Security Features of the jGMA Public API 41

5.4 Blocking API layer . 41

5.5 Integration into GridRM . 41

5.6 A Grid Gaming Framework . 42

5.7 Summary . 42

Appendices 46

A Formal Training 47

A.0.1 Research Training . 47

A.0.2 Publications / Talks / Networking 47

3

Chapter 1

Introduction

In this chapter we briefly introduce the concept of the Grid and go on to explain the need
for a standards-based approach for resource monitoring.

1.1 General Introduction

In 2001, Foster, Kesselman and Tuecke refined their definition of a Grid to ”coordinated
resource sharing and problem solving in dynamic, multi-institutional virtual organiza-
tions” [1]. This latest definition is the one most commonly used today to abstractly define
a Grid.

It could be said that a Grid consists of a federation of networked resources typically
found in virtual groups. The Grid can provide a gateway to submit computational jobs
and other work, which will be run on resources allocated by remote or local schedulers.
This makes better use of the computer-based resources, which may stand idle and under
utilized, and allows sharing of powerful resources (such as super computing platforms).
Closely related to resource sharing is resource monitoring - an essential component of
the Grid for tracking and maintaining the system state. By monitoring we mean:

� A way of gathering data about the state of the Grid resources,
� Processing this data for example filtering and fusing it,
� Transferring it from agents to the clients that use this information.

In order to gather this information, we first need to decide what data is needed and for
what it is used.

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1 shows a physical representation of Grid infrastructure. The Grid is basically
made up of the following components:

� A series of networked resources which are capable of acting on behalf of a of a
client,

� Agents which control the nodes,
� End users who want to make use of the resources,
� Networks, which provide the infrastructure that link the resources together.

12 3 4 5 6

78 9 10 11 12

A

B

1 2x

6 x

8x

2x

9 x

3 x

1 0x

4x

11 x

5x

7 x

1 x

E

the
rn

et

A

1 2x

6 x

8x

2x

9 x

3 x

1 0x

4x

11 x

5x

7 x

1 x

CFirewallGateway

Linux

Windows
Novel

Network Printer

1 2 3 4 5 6

7 8 9 1 01 1 12

A

B

1 2 x

6 x

8 x

2 x

9 x

3 x

1 0 x

4x

1 1 x

5x

7 x

1 x

E

t
he

rn
e

t

A

1 2 x

6 x

8 x

2 x

9 x

3 x

1 0 x

4x

1 1 x

5x

7 x

1 x

C

Resources

12 3 4 5 6

78 9 10 11 12

A

B

1 2x

6 x

8x

2x

9 x

3 x

1 0x

4x

11 x

5x

7 x

1 x

E

the
rn

et

A

1 2x

6 x

8x

2x

9 x

3 x

1 0x

4x

11 x

5x

7 x

1 x

C

Graphical Client Historical Data Store Job Schedular

Grid Sites (containing collections of resources)
connected to the Grid via gateway machines

Clients / agents consuming and monitoring Grid resources

Job Submission Gateway

Internet
(Global Network)

Figure 1.1: A physical view of a Grid

Potentially each of these components, which can be viewed as infrastructure, users, and
resources, can generate and acquire data: the components are both producers and con-
sumers of Grid information. The two key consumers are the control agents and the end

CHAPTER 1. INTRODUCTION 3

users. The agents require information to be able to make decisions when monitoring and
controlling the Grid. End users may be interested in monitoring a resource executing one
of their jobs, perhaps in real time. There is a need to provide the information in context;
for example, if information is required in a given time-frame and the system delivers it
late, it may be of no use to the agent. Another service that is needed is one for histor-
ical data; an agent may need information on a previous state of the Grid. Examples of
information, which may be gathered, are:

� Jobs currently running on a host,
� The capacity or status of a resource, for example, CPU speed, memory, or disk,
� A queue of tasks held by an agent,
� The number of resources being controlled by an agent.

The information that can be collected is quite diverse. Some information can be con-
sidered static, for example, the name of a node, while some has the potential to change
rapidly, for example, CPU usage. The initial stage of the monitoring process is discov-
ering what data is available and then how it can be monitored. This is non-trivial. The
problem lies within the heterogeneous nature of the Grid; it is a mixture of different ar-
chitectures, operating systems, components, and protocols. More importantly, there is no
one standard defining how to monitor resources in a Grid environment.

1.2 Motivation

The Distributed Systems Group (DSG) at the University of Portsmouth has for the last
few years, been developing a resource monitoring system for the Grid that can gather data
from a range of end-points, then filter and fuse this data for subsequent use by a variety
of clients. The monitoring system, known as GridRM [2], needs to distribute information
over the wide area between, so called, GridRM gateways.

1.3 GMA

The prototype of GridRM uses XML to mark-up events, which are then passed between
GridRM gateways over the wide area using HTTP, there is a need for a standards-based
approach. We decided to use the Grid Monitoring Architecture (GMA) [3], which is
the architecture recommended by Global Grid Forum (GGF) [4] because it identifies

CHAPTER 1. INTRODUCTION 4

and addresses the key issues involved in implementing a monitoring framework for the
Grid. The GMA specification sets out the requirements and constraints, which must
be addressed for a system to be considered GMA compliant. The GMA is based on a
consumer/producer architecture with an integrated system registry, see Figure 1.2.

Registry

Producer Consumer
Events

Register/
Publish

Register/
Search

Figure 1.2: The Architectural View of GMA

The GMA is an abstraction of the characteristics required for a scalable monitoring in-
frastructure for the Grid. The GMA supports a publish/subscribe and query/response
model. In this model, producers or consumers that accept connections publish their ex-
istence in a directory service (registry). Producers and consumers can then both use the
registry to locate parties, which will act as a source or destination for the data they are in-
terested in. It should be noted that monitoring data is sent from a producer to a consumer;
however either the producer or consumer may initiate a subscription or query.

The GGF argue [5] that the requirements of GMA cannot be met by existing event-based
services, as the data requirements for monitoring information are different compared to
other forms of program generated data. The GGF list several desirable features for GMA:

� Low latency,
� Capable of a high data rate,
� Minimal system impact,
� Secure,
� Scalable.

CHAPTER 1. INTRODUCTION 5

1.4 Summary

In this chapter we have briefly outlined the monitoring requirements of the Grid and
briefly defined the needs of GridRM. Having introduced the GGFs GMA, in the next
chapter we review the existing GMA implementations, comparing and contrasting their
abilities compared to the needs GridRM, and justify why there is a need for another
implementation.

In Chapter 3 we will describe the design for a reference implementation of GMA, and
then present benchmarks showing the performance and scalability of this initial imple-
mentation. Chapter 4 presents a demonstration application used to show off the capabil-
ities and functionality of our implementation. Chapter 5 describes the work that needs
undertaken to the current implementation to enhance its abilities to meet our future needs.
Finally, in chapter 6 we present our conclusions and describe the research goals and time-
line for future work.

Chapter 2

Similar Work

In this chapter we briefly discuss the various GMA implementations currently available
in the spring of 2004. Table 1, shows a matrix of the features and functionality of var-
ious GMA implementations, which we use to highlight the reasons that motivated us to
develop jGMA. We split the GMA implementations into two categories:

� Standalone: A system providing GMA functionality.
� Embedded: A system containing software that exhibits GMA like capabilities.

2.1 Standalone Implementations

2.1.1 R-GMA (Relational Grid Monitoring Architecture)

R-GMA [6] was developed within the European DataGrid Project [7] as a Grid informa-
tion and monitoring system. R-GMA is being used both for information about the Grid
(primarily to find out about what services are available at any one time) and for appli-
cation monitoring. A special strength of this implementation comes from the use of the
use of a relational model to search and describe the monitoring information. R-GMA is
based on Java Servlet technology and uses an SQL-like API. R-GMA can be used in con-
junction with C++, C, Python and Perl consumers and/or producers, as well as obviously
with Java.

R-GMA is the most ambitious and significant variant of the current GMA implemen-
tations that was initiated in September 2000. Since then the software has continuously
evolved. Currently R-GMA is being used for an ”in-house” testbed [8].

6

CHAPTER 2. SIMILAR WORK 7

2.1.2 pyGMA (Python GMA)

pyGMA [9] from LBNL [10] is an implementation of the GMA using Python. The devel-
opers have used the object-orientated nature of Python to provide a simple inheritance-
based GMA-like API. While the features of pyGMA are not comprehensive, it is easy to
install and use. pyGMA is supplied with a simple registry, which is designed for testing
but is not meant to be deployed. Some sample producers and consumers are provided as
a starting point for developing more comprehensive services.

R-GMA pyGMA jGMA MDS3

Languages Supported Java, C, C++, Python
and Perl

Python Java C and Java

Implementation Lan-
guage

Java Python Java C and Java

Installation Binary – RPMs for
RedHat, Source –
Python and RedHat
like Linux

Uses a Python installe Binary - one Java .jar
file, Source - ANT +
Apache Tomcat

GPT package manage-
ment (included)

Dependencies Ant, Java 1.4, Bouncy
Castle, EDG Java
Security, Jakarta
Commons, Logging,
Jakarta-Axis, Jas,
JxUtil, Log4j,
MySQL Client/Server,
MySQL Java Driver,
Netlogger, Prevayler,
Python2, Regexp,
Swig, Tomcat 4,
Xerces C and Java

Python 2, Python
SOAP (ZSI),
Python-xml, Fpconst

Ant, Apache Tomcat,
Java 1.4

Java 1.3 or better,
JAAS library, Ant
1.5, Junit, YACC (or
Bison), Globus Tookit
3

Transport HTTP (HTTP) SOAP LAN sockets, WAN
HTTP

(HTTP) SOAP

I/O Type Streaming and Block-
ing

Passive and Active Blocking and
Non-blocking

Query based

Type Standalone Standalone Standalone Currently Integrated

Registry RDBMS using
MySQL

Simple Simple/Xindice Collection of Grid
Services

Types of producers CanonicalProducer,
DataBaseProducer,
LatestProducer, Re-
silientStreamProducer

User-based User-based User-based

API Size 213 calls (Java API) 46 calls 17 calls Many calls

Security EDG-security for au-
thentication, SSL for
transport

None None GSS (SSL and Certs)

Where used In-house EDG testbed DMF GridRM GT3 (many)

Table 2.1: A comparison of GMA implementations

CHAPTER 2. SIMILAR WORK 8

2.2 Embedded GMA Implementations

There are several other systems, which either exhibit GMA like behaviour or have a GMA
implementation embedded within them.

The Metadata Discovery Service (MDS) [11] that is part of Globus Toolkit version 3 [12]
is based on the emerging Open Grid Services Architecture (OGSA) [13]. MDS provides
a broad framework within GT3, which can be used to collect, index and expose data
about the state of grid resources and services. MDS3 is tailored to work with the OGSA-
based Grid Services, it is, itself a distributed Grid Service. While MDS3 is an influential
component within GT3, it is not suitable in its current state to use with GridRM as it
requires the installation of the complex GT3 software.

The Network Weather Service (NWS) [14] allows the collection of resource monitoring
data from a variety of sources, which can then be used to forecast future trends. NWS
purports to have an architecture based on GMA, and components that exhibit GMA-like
functionality. However, even though this may be the case, the GMA parts of NWS are
integrated and it would be difficult to break these out of the release.

Autopilot [15] from the University of Illinois Pablo Research Group [16] is a library that
can be called from an application to allow monitoring and remote control. Autopilot
sensors and actuators (akin to the GMA producers/consumers) report back to a directory
service called the Autopilot Manager, which allows clients to discover each other. Au-
topilot can be used to create standalone GMA enabled components in C++, but it requires
and builds on functionality provided by the Globus Toolkit (version 2).

Table 2.1 lists features and functionally of various implementations of the GMA. As
it can be seen R-GMA has great potential, but there are a number of drawbacks, not
least of these are the large number of system dependencies required for installation and
use. In addition, there are some architecture features, which may limit its scalability and
flexibility. Alternatively pyGMA appeared promising, but there are some issues with
using it with a Java application, and there are some considerations with regards it having
a very simple registry. Finally, MDS3 had the potential to fulfil our requirements for
GridRM. Unfortunately the current implementation is embedded in the Globus release,
which meant that it would potentially require some reengineering to meet our needs.

CHAPTER 2. SIMILAR WORK 9

2.3 Summary

Currently the embedded versions of GMA do not easily lend themselves to being used
as standalone GMA implementation; consequently they cannot be used in their exist-
ing form with GridRM. This leaves three alternative GMA implementations, pyGMA,
Autopilot and R-GMA.

Calling Python (pyGMA) from Java, which is a requirement of GridRM, is not straight-
forward. While the Jython project [17] allows the use of Java from within Python, there
is no simple mechanism for invoking Python from within Java without creating a cus-
tomised and potentially complex JNI bridge.

R-GMA does provide a native Java API, and initially it was thought that R-GMA would
be a suitable implementation for GridRM. However, there are a number of drawbacks
with using R-GMA. It can be seen in Table 1 that there are a significant number of
dependencies to build R-GMA from source. Also, R-GMA is aimed at one specific
version and distribution of Linux (Redhat 7.3). The developers have used a build process,
which relies on files and libraries being in non-standard places and the use of a non-
portable mechanism for compilation (shell scripts). There is a binary release of R-GMA,
however, this is via RPMs, which again limits the platforms on which the system can be
automatically installed. Another problem that was encountered is the rapid development
and changing nature of R-GMA. This can create problems for a developer trying to work
with such a large code base, because it is constantly evolving to keep up with the latest
trends and needs of the large number of developers and potential users.

A requirement of GridRM is that it is easy to install and configure across multiple plat-
forms. A complicated set of prerequisites would make its deployment a lengthy and po-
tentially complex task. GridRM requires a GMA implementation that has a lightweight
Java API, which is functional, easy to use, and extensible.

Chapter 3

jGMA Design Criteria

3.1 Introduction

The global layer of GridRM requires a wide-area event-based system for passing con-
trol and monitoring information between the local GridRM gateways. Ideally, from our
point of view, we would have preferred to integrate a third-party GMA implementation
into GridRM; this is for obvious reasons, such as reduced development time and mini-
mal support requirements. However, as stated in Chapter 2, none of the existing GMA
implementations met our requirements, and consequently we have developed our own
version.

The first steps in our design were to layout a set of general criteria that we considered to
be necessary and/or desirable. The set of criteria includes:

� Compliant to the GMA specification,
� Small well defined API,
� Minimal number of other installation dependencies,
� Simple to install and configure,
� Uses Java technologies, and fulfil GridRM’s needs,
� Support both non-blocking and blocking events,
� Designed to work locally over a LAN or over a wide-area such as the Internet,
� Fast, and have a minimal impact on its hosts,
� Scalable,
� Choice of registry service, from a lightweight one, such as text-based files, to an

XML-based one, for example Xindice [18], or something else, such as a relational
database or Globus MDS,

10

CHAPTER 3. JGMA DESIGN CRITERIA 11

� Able to work through firewalls,
� Capable of taking advantage of TLS and/or the GSI.

These criteria were based on our experiences whilst reviewing and investigating the other
GMA implementations, the needs of GridRM, and some overarching principals. Addi-
tionally, we decided to write jGMA in pure Java which allows us to take advantage of a
range of Java features, related technologies, as well as providing portability via bytecode
that should execute on any compliant Java Virtual Machine.

3.2 The jGMA Architecture

3.2.1 jGMA Components

In order to ensure that jGMA was easy to install, dependencies were limited to a JVM and
Apache Tomcat [19], which provides a servlet container and a gateway that uses HTTP
for inter-gateway communications. This dependency did not compromise our design cri-
teria since GridRM requires Tomcat. Moreover, most application developers are familiar
with Tomcat as it is widely used today.

jGMA consists of four components:

� A virtual registry to allow producers and consumers to discover each other,
� A Producer/Consumer servlet (PC servlet) is used for remote communicating events,
� Consumer,
� Producer.

Communication between components uses a shared code base, which provides:

� Wide-area (WAN) communication between remote components,
� Local (LAN) communication between local components.

jGMA has two modes of event passing. The first mode is local, where communications
are within one administration domain, i.e. behind a firewall. The second mode is global,
when traversing one or more administrative domains, e.g., via one or more firewall(s).

CHAPTER 3. JGMA DESIGN CRITERIA 12

Tomcat

Consumer

Search/
Registration

Tomcat

Producer

jGMA
Registry

Producer/
Consumer

Servlet

Producer/
Consumer

Servlet

Search/
Registration

Producer/Consumer
Message Path

Administrative
Boundary

Registration/
Publish

Figure 3.1: The jGMA Architecture

For wide-area communications HTTP is used. The gateway PC servlet provides wide-
area connectivity for machines, which do not have direct access to the Internet, which is
common to the nodes in standard Beowulf cluster [?].

Figure 3.1 shows the jGMA components being used together to provide a wide-area
message-passing framework. In this example there are two sites connected over the In-
ternet. The consumer and producer are communicating via the PC servlets, which are
handling the WAN communication on their behalf. Although, the registry is sharing a
Tomcat container at one of the sites, this could, however, be hosted elsewhere. If the
producer and consumer were at the same site they would communicate directly using
sockets and the PC servlets would not be involved.

CHAPTER 3. JGMA DESIGN CRITERIA 13

Tomcat

Consumer

Search/
Registration

Tomcat

Producer

Registration

Producer

jGMA
Registry

Producer/
Consumer

Servlet

Producer/
Consumer

Servlet

Search/
Registration

Producer/Consumer
Message Path

Administrative
Boundary

1
1/2

3

1

1/2

3

3

Figure 3.2: Wide-area jGMA Communications

3.3 Example WAN Communications

Figure 3.2 illustrates the steps that occur when a jGMA consumer attempts to interact
with one or more producers.

� [1] The producer and consumer register with the registry:

– The producer/consumer create a connection to the local PC servlet,
– The producer/consumer sends the PC servlet a human readable name and a

description of the its capabilities or interests (marked up in XML),
– The PC servlet creates a WAN address, from which the producer/consumer

can be accessed remotely,
– The PC servlet sends the capabilities/interests of the producer/consumer and

the WAN address to the registry,
– The PC servlet sends a ’RegistrationComplete’ event to the producer/consumer.

CHAPTER 3. JGMA DESIGN CRITERIA 14

� [2] The consumer queries the registry:

– The consumer sends an SQL-like query to the PC servlet,
– The PC servlet forwards this query to the registry,
– The Registry replies with a list of matching producers (marked up in XML),
– The PC servlet sends a ’RegistryMessage’ to the consumer.
– The PC servlet sends a ’registration complete’ event to the consumer.

� [3] Consumer/producer communications:

– The consumer parses the registry response and selects a producer to commu-
nicate with,

– The consumer sends a message via a socket connection to the PC servlet,
– The PC servlet sends the message to the remote network via HTTP,
– The remote PC servlet, on the producer network, sends the message to the

producer via a socket connection,
– The producer sends a reply to its local PC servlet,
– The producers PC servlet sends the reply via HTTP back to the consumers

PC servlet,
– The consumer PC servlet sends the reply back via a socket to the consumer.

3.4 The initial jGMA Implementation

While conceptually the producer, consumer and Producer/Consumer servlet are different;
the jGMA implementation reuses the same code-base for each. This is possible because
although they have different logic for processing jGMA messages a large proportion of
their functionality is focused on exchanging messages (events).

Figure 3.3 shows the internal structure of the producer, consumer, and Producer/Consumer
servlet. This figure attempts to highlight the importance of the socket send() and re-
ceive() methods. If these methods were poorly implemented, i.e. exhibited poor
performance, it would affect the whole system. Our initial analysis of the program flow
showed that the majority of the execution time was spent manipulating, copying and
sending the jGMA messages through the system.

CHAPTER 3. JGMA DESIGN CRITERIA 15

Client
(Prodcuer/
Consumer)

Comms
GMA Message

Queue

Socket Handler

Socket Thread

Socket
Send()

Incoming Messages
via Socket

Servlet

Comms
GMA Message

Queue

Socket Handler

Socket Thread

Socket
send()

Incoming Messages
via Socket

HTTP PUT()

Incoming Messages
via HTTP

Figure 3.3: The internal structure of a jGMA client and Producer/Consumer servlet

3.4.1 RMI

The first jGMA implementation used bi-directional RMI for communications. The reason
for using RMI was that it enabled us to rapidly develop the message passing parts of the
initial software. However, it was found that the communication performance was too
slow [21].

3.4.2 Sockets (LAN)

In order to speed up the sending of messages Java sockets were used in place of RMI.
This gave better control of the send and receives methods, which allowed further optimi-
sations, these are described later in Section 3.4.4. Java NIO [22] may be considered for
this layer in the future.

CHAPTER 3. JGMA DESIGN CRITERIA 16

3.4.3 HTTP (WAN)

The current GMA specification does not define the message format and protocol for WAN
communication. jGMA uses HTTP [23] for its WAN communication. We do not have to
ASCII encode binary messages before sending them because the HTTP protocol allows
binary data to be sent in the body of a HTTP POST request to permit uploading through
HTML forms [24]. Using ’multipart/form-data’ and ’multipart/mixed’ it is possible to
send more than one binary message in one request, or mix ASCII and binary in one
request. If the GGF defines a message format for WAN communication in the future,
jGMA can easily send GGF compliant messages. Thus, using HTTP POST minimises
the effort required to adapt jGMA to comply with a GGF standard message format later.
Currently, jGMA only sends one message per request, but it may take advantage of the
HTTP’s ability to send multiple messages in future versions.

3.4.4 Objects

In order to reduce message latency we needed an efficient means of passing data be-
tween jGMA components. The normal Java programming practice of using objects was
replaced with static methods, which manipulated byte arrays. Our objective here was to
reduce the number of times Java copied the internal data structures and limit the use of
expensive calls to the high-level Java API. The flow of data using the byte arrays method
is shown in Figure 3.4.

Consumer

jGMA

Socket
Send()

Producer

jGMA

Socket
Recv()

Byte to/from String

Byte read/write Java IO

Figure 3.4: Minimising the number of copies

CHAPTER 3. JGMA DESIGN CRITERIA 17

3.4.5 Naming

The initial version of jGMA used a ”pseudo unique” naming scheme to identify con-
sumers and producers. Here the address was made up of several components used for
routing messages. While there was no guarantee that the name would be unique, the
naming scheme made it unlikely that there will be a clash.

3.4.6 The Registry

The overall purpose of the registry in GMA is to match consumers with one or more
producers (or visa versa). This is achieved by producers (or consumers) publishing in-
formation about themselves and then consumers (or producers) searching through the
registry until they find the relevant match and thereafter the two communicate directly
with each other.

The information published in the registry typically includes the unique address of a pro-
ducer or consumer, and potentially their attributes and capabilities. In addition, to limit
the retention of stale information, some sort of Time To Live (TTL) tag should be asso-
ciated with the registration.

An implementation of the GMA should be capable of scaling to global proportions. This
implies that there should multiple registries and the registry information should be repli-
cated for fault tolerance purposes.

GridRM uses jGMA to provide a messaging infrastructure between its gateways. GridRM
gateways hold detailed information about its producers and what data they can provide.
A GridRM client could search through one or more gateways for the producers that it
is interested in. However, as the number of producers and gateways becomes large this
would produce an unacceptable load on the overall system and also means that a query
could take a significant amount of time. It is clear that a meta-level registry service is
necessary. Such a service would hold high-level information about producers and gate-
ways that could be interrogated first by a client before doing a low-level and detailed
search on individual gateways.

jGMA registries can provide this meta-level registry service for GridRM. Ideally, jGMA
registries should be able to ”slot” together to form a virtual registry. Such a registry, from
a client’s point of view, would appear as one large shared entity. To create the virtual
registry requires that the physical registries are distributed and the information they hold
is replicated.

CHAPTER 3. JGMA DESIGN CRITERIA 18

jGMA originally used a volatile registry, which stored the names of producers and con-
sumers in memory. This registry was designed to provide the limited functionality needed
to build and test the original jGMA implementation. The jGMA registry contains a parser
that allows queries based on a simplified SQL syntax. Maintaining a high-level of ab-
straction via the registry API (and SQL syntax) has made it possible to create a jGMA
registry interface that can plug-in to a variety of potential persistent repositories, includ-
ing XML and relational databases, as well as other systems such as the Globus MDS and
R-GMA.

Originally, producers or consumers in jGMA registered just their address in the registry.
The revised registry API not only permits consumers or producers to register, but it also
allows an associated XML document be uploaded, which describes features and capa-
bilities of the registered entities. This additional feature means that the developers using
jGMA can publish as much information as they wish, and consequently have control over
the granularity of the virtual registry service.

For the purposes of GridRM, the jGMA registry service will remain minimal, we do not
intend to store anything other than the information required to provide the GMA-like
functionality and use of the extra XML information will be limited.

The objective of this phase of jGMA has been to produce an abstract registry API that can
interact with a number of persistent data stores, include relational and XML databases,
or a simple flat ASCII file. The current jGMA registry service has been prototyped using
volatile storage. Later we plan to test Berkeley DB Java Edition [25] and an ASCII text
file as registry components.

3.5 The jGMA First Release

3.5.1 Benchmarks

This section reports on the initial testing the performance and functionality of jGMA
over the local area. The overall aim of this stage was to optimise the communication
overheads, assess its impact, and confirm overall functionally. We provide an overview
of the tests with some key results highlighted, a more thorough analysis can be found in
a DSG technical report [27].

A Java implementation of the traditional Ping-Pong network test was used to measure
point-to-point performance between a producer and consumer. We were careful to omit

CHAPTER 3. JGMA DESIGN CRITERIA 19

extra overheads, such as internal processing of jGMA messages. By comparing the mea-
surements taken when timing jGMA, to the raw performance, it was possible to analyse
performance overheads.

Test 1: Non-blocking I/O - A Ping-Pong between a single producer and consumer. This
test involved executing both consumer and producer on the same host, and then with the
producer and consumers on different hosts connected via Fast Ethernet.

Test 2: Blocking I/O - A Ping-Pong between a single producer and consumer. These
tests were executed both over the network and on the same machine in the same way as
the non-blocking tests.

Test 3: Scalability Tests - The cluster’s head node runs the Producer/Consumer servlets,
Registry servlet, and one consumer. The producers are distributed over the cluster so that
each node can run up to two. N producers are started and the consumer instructs them
to send messages to it over Fast Ethernet, the number of messages the consumer handles
per second is recorded. Non-blocking I/O was used as this was felt a more realistic
simulation than blocking I/O for large numbers of events.

Test 4: Wide-Area Communications - A wide-area environment was simulated on the
DSG cluster by running two Producer/Consumer servlets - one for the consumer and one
for the producer. The test machines communicate via Fast Ethernet. The test measures the
latency and bandwidth of sending jGMA messages over HTTP via a Producer/Consumer
servlet for a range of message sizes. For an explanation of the steps in wide-area com-
munications see Section 3.3 and Figure 3.2.

3.5.2 Results

The performance tests (for details see [27]) showed that for blocking communications
there is an extra 8-millisecond overhead compared to raw sockets for Ethernet messages
under � 256 Kbytes. This overhead is due to processing a blocking message, which
we are continuing to investigate. There is the possibility of changing to an eager-reader
paradigm here, but this may produce an excessive impact on the host. The overhead
currently limits the peak bandwidth, which is 33% of the raw socket bandwidth. For non-
blocking communication using messages � 256 Kbytes, jGMA produces an overhead of
1.4 milliseconds compared to raw sockets for Ethernet, and the peak bandwidth is 67%
of the raw socket performance.

CHAPTER 3. JGMA DESIGN CRITERIA 20

It requires between 7 to 9 producers (depending on the message size) to saturate a jGMA
consumer. When more producers are added, the number of messages the consumer can
handle does not fall - which indicates that even under a heavy load (1100 x 32 Kbytes
messages per second) jGMA is stable. When the number of messages being received
by a consumer reaches its peak, new messages begin to queue up in the send buffers of
the producers, eventually a producer will consume all available resources and will not be
able to add any new messages to its send buffer. It is unlikely that GridRM will generate
messages at this rate, but it indicates the throughput that GridRM can expect jGMA to be
able to handle reliably.

It became evident that some kind of throttling was needed for the sending mechanisms
of jGMA. Currently a producer can generate as many messages as the memory allocated
to it by the Java VM can contain. This was desirable when testing the scalability because
it allowed stress testing of the jGMA implementation. This, however, does have a side
effect, a consumer can only process a certain number of messages per second. When
multiple producers are sending at the same time, the consumer will reach a maximum
throughput and messages will start to accumulate in the send buffers at each producer.

3.6 The Revised jGMA Implementation

After completing the first version of jGMA it became apparent there were some problems
with the software. The benchmarking process highlighted an implementation problem as
it stressed the system beyond the simple tests used during the implementation stages. In
addition, some engineering decisions were made about naming and addressing within
jGMA, which proved to have redundant features. The changes made to address these
problems are outlined in this subsection.

3.6.1 Event Driven API

jGMA follows the event-driven programming paradigm since it is not known when a
message will be generated. This is similar to the way a typical GUI operates, where
little happens until the user interacts with the GUI. In jGMA the program only executes
background house keeping tasks, such as cache flushing, until a producer or consumer
generates an event. This creates a problem for software, which tries to control the flow
of execution (waiting for a message reply).

CHAPTER 3. JGMA DESIGN CRITERIA 21

In initial version of jGMA an attempt was made to provide a combined event driven and
traditional blocking API, this created complex software, which was hard for the developer
to debug. A neater solution is proposed which places an optional blocking wrapper layer
around a stand-alone event driven API, illustrated in Figure 3.5. This allows developers
to integrate jGMA with programs, which expect to control the flow of messages while
allowing access to a simple non-blocking event API for event driven programming.

1: Initial Implementation

jGMA Client API

Producer/Consumer

Event Driven Messenging

Blocking Messenging

HTTP
Comms

Socket
Comms

jGMA Client API

Producer/Consumer

Event Driven Messenging

Blocking Messenging
Client API

HTTP
Comms

Socket
Comms

2: Revised API

Figure 3.5: Revisions to the jGMA API

3.6.2 Revised Naming

The initial addressing and naming scheme (see section 3.4.5) in jGMA was based on
implementation decisions rather than design, as the API matured parts of the old naming
system became redundant so a new scheme was designed from scratch.

Addressing Requirements of jGMA

A client (consumer or producer) requires some basic information to send a message to
another end point. When communicating over a LAN a hostname (either an IP address or
a name which will resolve to one) and a socket port number could be used for instance.
Because there may be more than one jGMA client running on a single machine each client
must have a unique port. An alternative would be to run a proxy server on a well-known
port that would differentiate between destinations on behalf of the client.

jGMA does not make the assumption that each client can be directly reached from the
Internet. The PC servlet can act as a gateway, which can accept messages from the
Internet and then pass them onto a client within the LAN. Similarly jGMA does not
assume that all clients have direct access to the Internet so the PC servlet can also accept

CHAPTER 3. JGMA DESIGN CRITERIA 22

messages from clients and forward them over the Internet. The PC servlet is acting a
multiplexer and de-multiplexer for jGMA communications over the wide area.

Clients can contact the PC servlet on a known port and have the hostname hardwired. It
would be possible to discover the PC servlet using multicasting, but this manual config-
uration keeps the code simple. This means that there are two separate sets of addressing
issues, which allow LAN and WAN communications.

LAN Addressing

When a PC servlet or a client is communicating to a client directly over the LAN it
needs to know either the hostname or IP address and the socket number of a client. It is
possible to have more than one machine on a LAN with the same fully qualified domain
name and it is also possible to have more than one machine with the same IP address on
a LAN (in some non-standard configurations). It is less likely that there will be machines
sharing IP addresses than having the same hostname, so for jGMA the assumption is
made that the IP is unique on the LAN, this is a compromise between complexity and
functionality. Since it is not possible to have more than one program bound to a TCP
socket the combination of IP address and socket number is unique on the LAN.

Information required to contact a client on the same LAN:

� IP
� Socket Port Number

(i.e. 192.168.0.100:5678)

Additional Naming Requirements

The combination of a PC servlet URL, an IP address and a port number provides enough
information to create a globally unique address for each producer or consumer. However,
it is possible to embed more information into a name, than just the address, such as some
human readable information to help developers map a jGMA name to a client they are
working on. Since this information is sent with every message this extra information
represents an overhead for every message, so a balance must be found between useful
information while keeping the size of the address as small as possible. Embedding extra
information along with the address allows some functionality to be provided by the jGMA
API by parsing the name without having to query a registry.

CHAPTER 3. JGMA DESIGN CRITERIA 23

It is useful for the developer to be able to tell from a jGMA name whether a client is a
producer or a consumer. The API could also filter consumers and producers by parsing
the name, without having to query the registry.

Allowing the developer to use a human readable label in the name allows them to po-
tentially to distinguish between clients without having to query the registry. This makes
debugging and understanding the flow of message in jGMA easier since the raw jGMA
name contains enough information to associate a name with a end point instance. Again,
it would be possible for the jGMA API to make use of this extra information, for example
filtering for consumers, which have a specific name.

Combing this information allows us to create a valid URL for LAN addressing within
jGMA (i.e. socket://192.168.0.100:5678/consumer/testconsumer).

WAN Addressing

The PC servlet component runs in a Tomcat container, this provides a HTTP URL to
access the servlet by. As inter PC servlet communication is done via HTTP this URL
is the only information required to initiate a connection to a remote servlet. Creating a
hash from the client LAN address and appending it to the servlet URL provides a unique
WAN address.

Information required to contact a client over the WAN:

� URL to PC servlet,
� Hash mapping to the LAN address.

(i.e. http://dsg.port.ac.uk:8080/jGMA/PC?234623)

Two Tier Naming Structure

Following this addressing design a client has two addresses: a LAN address used for
socket communications and a WAN address used for inter-servlet communications using
HTTP(s).

The PC servlets were modified to allow the automatic translation between the LAN and
WAN addresses using a hash-map to link the two addresses. To explain, by way of
example, if a consumer queries the registry for a list of producers the PC servlet will
translate the WAN addresses of any local producers into LAN addresses. This has the

CHAPTER 3. JGMA DESIGN CRITERIA 24

effect of hiding information about a LAN, such as IP addresses, are hidden from remote
sites, only the URL to the PC servlet and the hash are exposed.

3.6.3 Client and Servlet Liveliness

Should a consumer or producer fail to cleanly un-register themselves (possible with a
poorly implemented client or a network outage) a stale registration will be left in the
registry. Similarly if a PC servlet is no longer reachable for some reason any consumers
and producers behind it become un-reachable, but their information is still in the registry.
It is desirable for these stale records to be cleaned up automatically by jGMA.

A two-tier solution is proposed. Firstly the PC servlet will monitor and test the com-
munications between itself and any consumers and producers registered with it, actively
detecting problems with the clients and then signalling the registry if a fault is detected.
Secondly the registry will issue each PC servlet with a lease; if the lease expires the
registry will clean out any records, which are associated with the PC servlet.

In the test environment the PC servlets and registry were left running most of the time
but the clients were constantly being started and stopped (possibly without using the API
to signal the registry) so the client to servlet tests, were implemented first as this kept
stale records out of the registry during testing. A ping-pong event is periodically sent to
each registered client from the PC servlet using the standard jGMA infrastructure. If a
reply is not received within a set time limit the servlet un-registers the client. This tests
the liveliness of the jGMA infrastructure between the client and servlet as well as the
liveliness of the actual client.

3.7 Summary

The jGMA library has been revised since the first implementation, after the benchmark-
ing tests highlighted problems with the design. By moving the blocking API into a sepa-
rate layer the software was simplified, which has made the implementation more robust.
The jGMA naming now use a standard URL format and the two-tier approach to ad-
dresses minimises the amount of local network information, which is published in the
registry, and this improves security.

The jGMA API is relatively small; currently there are only 17 methods in the API. Build-
ing on the current basic API and utilising other Java features, such as threads, can achieve

CHAPTER 3. JGMA DESIGN CRITERIA 25

the higher-level producer/consumer functionality. For example, it is possible to do simul-
taneous blocking I/O calls by creating two consumers instead of one, or a more compli-
cated client may create both a consumer and a producer.

Proposed future implementation and design work is described in Chapter 5.

Chapter 4

jGMA web-cam demo

There is often a need to demonstrate the jGMA software in an interactive way during
presentations; it is also desirable to have a permanent online demonstration, which inter-
ested parties can execute later to see how the overall system works. However, jGMA is
middleware, it provides services transparently for other software, and there is only a log
file to show that jGMA is working, which is not typically very interesting.

Such a demonstration should have the following features:

� Event driven (the user interacts with the GUI which creates jGMA events),
� Accessible via the Internet through a web browser,
� Graphical,
� Show both producers and consumers,
� Demonstrate some of the underlying aspects of what jGMA is doing behind the

scenes,
� Have the scope to be extended to show more complicated functionality.

A web-cam browser was chosen as the example application for the demonstration. The
demonstration consists of a Web browser displaying web-cam images served from jGMA
producers. The images are fetched by a jGMA consumer, which is coupled, to the web
interface.

26

CHAPTER 4. JGMA WEB-CAM DEMO 27

4.1 The Design

4.1.1 The Architecture

An important feature for the web-cam demonstration architecture is that it has to use
two different sites. The jGMA PC servlets are executing one these two sites that are
connected by the Internet. This set up enables us to show all aspects of jGMA commu-
nication (Local, LAN and inter-site WAN). Figure 4.1 shows the schematic layout of the
demonstration.

Holly

Application

Servlet

Monkey

PC Servlet

Toad

Registry

Producer

Producer

Rimmer

Consumer

Lounge

Loch Ness

Client

Web Browser

Webcam

Local (Socket)

WAN (HTTP)

LAN (Socket)

Computer

PC Servlet

Tomcat

Figure 4.1: A schematic showing the layout of the jGMA web-cam demonstration

CHAPTER 4. JGMA WEB-CAM DEMO 28

The demonstration provides an interactive graphical interface (Web browser) to con-
sumers and producers executing within the jGMA framework. Producers fetch images
from web-cams either directly from the local machine or via HTTP. Consumers in turn
can discover and retrieve these images using the jGMA framework.

Two simple operations were implemented for the web-cam demonstration: fetch()
and pull(). fetch() retrieves an image from a producer and poll() retrieve im-
ages at predefined intervals. In the future we will add more sophisticated features such
as video streaming.

4.1.2 The Web-cam GUI

There are three components that make up the GUI:

1. A box with a list of available web-cams discovered by querying the registry.
2. A box with textual log showing what jGMA is doing behind the scenes.
3. An area where images are displayed.

These components are laid out in Figure 4.2.

1 2

3

Figure 4.2: The Web browser GUI design

4.1.3 The Web-cam Implementation

As the demonstration interface is within a Web browser there is one key technical diffi-
culty to overcome. More than one component may need to be refreshed at the same time.

CHAPTER 4. JGMA WEB-CAM DEMO 29

The log window (label 2 in Figure 4.2) needs to be updated each time a jGMA operation
is performed, i.e. refreshing the web-cam producer list (label 1 in Figure 4.2), and the
web-cam image needs to be displayed (label 3 in Figure 4.2) when a producer is selected.

In order to just use the Web browser to deploy the interface, the GUI must be created
from HTML widgets, i.e. drop-down combo boxes and buttons and the it must be able
to refresh more than one component after a user action. Based on the author’s previous
experience using HTML to write GUIs it was not known if this was possible. If it could
not be achieved then the interface would have to be written as a Java Applet and embed-
ded in the Web browser; this adds the extra requirement of a working JVM to view the
demo. Since we felt that it was important to reach as many people as possible, the use of
an Applet was not desirable and the HTML implementation was pursued.

User actions from each page element could require one or all of the other elements to be
updated. The options for doing this in HTML are:

� Client side Java Script dynamically altering the page elements,
� Using one page and refreshing the whole page when ever an action is performed,
� Splitting the page into four separate components using IFrames (inline frames).

Using the HTML IFrame component, allows for the best control of the page elements,
minimising the amount of content, which must be served to update the interface, i.e. only
the changed elements are served. Since the most widely used web browsers (Internet
Explorer and Mozilla) use different Document Object Models [28], writing a generic
Java Script that can work on both browsers is difficult. One solution is to minimise the
use of client side scripting so that the demonstration will work in as many browsers as
possible.

4.1.4 A jGMA web-cam Producer and Consumer

A jGMA web-cam producer was created that would respond to queries from jGMA con-
sumers. The web-cam producer fetches an image from a URL (provided as a command
line parameter) and sends the image as binary information to the consumer. Web-cams
were used, which publish their images via HTTP servers as standard JPEGS. This meant
that a producer can fetch an image from a geographically remote web-cam, which allows
a diverse and interesting set of web-cams be used for the demonstration.

The web-cam consumer provides two functions, which can be invoked by command line
parameters. If the consumer is passed a jGMA address, it attempts to send an event to the

CHAPTER 4. JGMA WEB-CAM DEMO 30

producer requesting a web-cam image; if the operation is successful, it writes the image
to a file and prints the file name to the standard output (stdout). If no command line
parameters are issued, the consumer queries the registry and prints out a list of web-cam
producers.

4.1.5 Writing the Interface

PHP4 was used to implement the server side interface, the language was chosen as it was
already installed on the departmental Web Server. It should be noted that any server side
language would have worked. The script executes the jGMA consumer and interprets the
collected output. HTML and CSS is dynamically written to build the interface with one
line of client-side Java Script to allow more than one element to be refreshed if required.
For example the log element (label 2 in Figure 4.2) and the web-cam display element
(label 3 in Figure 4.2). Every time the script is called an entry is placed in the log file,
which provides some insight into some of the actions jGMA is undertaking behind the
scenes.

Figure 4.3 shows a screen shot of the demonstration. The three buttons allow a user to
retrieve a new image from a web-cam producer, poll a producer for images, i.e. automat-
ically invoke the consumer at a predefined interval to retrieve a new image, and finally
the list of producers can by refreshed.

A BASH shell script is used to start the demonstration or publish a new version of the
producer to the servers.

4.2 Summary

The web-cam demo has been successfully deployed across two sites using four web-
cams. It was demonstrated live at the UK E-Science All Hand Meeting 2004 [29] as
part of a presentation on jGMA. The demo meets the requirements described in the in-
troduction to this chapter and allows the jGMA software to be interactively demonstrated
in a manor suitable for presentations or viewed over the Internet using any modern web
browser.

CHAPTER 4. JGMA WEB-CAM DEMO 31

Figure 4.3: A Screen shot from the running demo

4.2.1 Problems with the Current Implementation

The PC servlet to registry leasing had not been implemented when the demonstration was
developed it is possible to leave producers in the registry which could not be interacted
with (stale producers). The static nature of the HTML interface means that if a user
leaves the browser open for a long period the information it displays may be out of date.
For example producers may have been added or removed from the registry which will
make the producer list inconsistent.

If the PHP script calls the Java consumer with the address of a producer that is no longer
active the PHP script will hang, as the jGMA consumer will never return an image. This
requires the demonstration to be restarted. The work around for this is to always refresh
the producer list before using the demonstration. Three issues must be addressed to fix
this behaviour. When the PC servlet to registry leasing is implemented it will be less
likely that there will be stale producers in the registry, as they will be removed if a PC
servlet fails to renew its lease. The jGMA consumer needs trap and handle the condition
of a producer not sending it an image within a timeout period. And finally the PHP

CHAPTER 4. JGMA WEB-CAM DEMO 32

script must provide a finite execution time for any consumer it invokes in order to protect
against programming errors in either the jGMA framework or the web-cam producers
and consumers.

Unfortunately the final point cannot be implemented using PHP4, as the functions to
execute external programs do not include a way to limit the execution time of forked
processes. However, PHP5 does have this kind of external process handling. When
PHP5 has reached production quality the interface may be ported from PHP4.

4.2.2 Future Work

Apart from the alterations already described, the demonstration could be extended in the
future to show more complex GMA behaviour such as:

� Allowing a consumer to subscribe for images from a producer, which could send
a new image based on motion detection. This would demonstrate subscribing for
events and a producer pushing events to a consumer.

� We could make either video or sound producers to create a larger amount of traffic
than single JPEG images. This would demonstrate the robustness of jGMA when
working with large events.

Adding video streaming or animating images in a slide show would let the demonstration
constantly show something happening rather than just displaying single image. This
would be more interesting for an audience as there is more to see, and stress jGMA
capabilities further by creating more network traffic.

Chapter 5

Conclusions and Future Work

In this report we have described and then discussed jGMA, a reference GMA implemen-
tation written in Java. We were motivated to produce jGMA due the lack of a viable
alternative to use with our grid monitoring system GridRM, and the ample evidence that
such low-level middleware was generally needed for a range other Grid service and ap-
plication.

jGMA, whilst being functional, is at an early stage of development, there are a number
of outstanding implementation issues to solve (described in Chapters 3) and a great deal
of further study is required before the Virtual Registry can be implemented. In this report
we have presented the results of simple benchmarks that provide us with some insight
into the expected performance and capabilities of jGMA, however this will change as we
extend and optimise the implementation further. Although jGMA is still evolving it has
been made available [30] as a binary release to developers interested in investigating and
further enhancing its capabilities.

5.1 Summary of Immediate Research Goals

The key areas, which have been researched while producing the core of jGMA are:

� Naming and addressing issues in distributed systems,
� Writing efficient high performance Java.

The core of the jGMA framework is functional, solving the remaining implementation
issues will either improve stability or add extra functionality to make the system easier

33

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 34

to use. The focus of the research is now the registry component, which needs to be
investigated thoroughly.

5.2 Future Research Directions

In this section we focus on potential future research directions of work with jGMA. Chap-
ter 3 described some implementation issues of the current jGMA consumer/producer PC
servlet and considers a number of enhancements. Additionally, Chapter 3 also outlined
the components, such as PC servlet to registry leasing, that need to be completed. The
most interesting of these implementation issues are discussed in more depth in this chap-
ter. There is also the possibility to add debugging and monitoring tools to make the
system easier to use by end users. However, the focus for the next stage of research
will be to design and implement the jGMA registry. An initial design of the distributed
registry is described in Section 5.2.3.

5.2.1 Soft-state PC Servlet to Registry Leasing

As described in the design and implementation Chapter 3, there is a need to detect when a
PC servlet is no longer working, as any producers or consumers using that servlet will no
longer be contactable. The proposed method to overcome this is to use a form of leasing
(similar in concept to that used in Jini [31]), between the PC servlet and the Registry
(over the wide-area). The infrastructure implemented for the ping-pong tests, which tests
communications between the PC servlet and Consumers/Producers is not ideal for testing
the WAN communications because it typically has a higher latency and lower bandwidth
than a LAN, so the number of messages used to test connectivity should be kept to a
minimum to make most efficient use of the bandwidth.

Two values must be determined - the length of the lease and how long before (or after) the
lease expired before attempts should be made to renew it. A simple solution is to choose
values based on the developers previous experience. However, more accurate time values
may be chosen through either experimentation or empirical studies.

The requirements for the leasing mechanism will change when the design of the virtual
registry is further studied. The development of the leasing system will be left until the
implementation issues of the registry are better understood.

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 35

5.2.2 jGMA Monitoring

Figure 5.1: The Happy jGMA Web Page

The PC and registry servlets already provide a limited interface for debugging the instal-
lation of jGMA. The inspiration for this simple message (see Figure ??) was the Happy
AXIS page, which can be used to validate an installation of the Apache’s projects im-
plementation of SOAP [32]. While this helps to check that jGMA is installed correctly,
we would also like to provide some tools to allow jGMA to be monitored while it is run-
ning. Currently the developer must watch and interpret one log file for each PC servlet
to understand what is happening within jGMA; obviously as the number of PC servlets
increases, understanding the log files becomes harder. There is a need for more intuitive
tools to help monitor, potentially test and debug a system using jGMA.

We have identified four ways that information could be extracted from an executing
jGMA system. These are listed below. The most important issue is to minimise the
impact and intrusiveness on jGMA, if the additional tools are being used; these action
should not affect the behaviour or performance of the system.

1. Provide an API to access copies of events (messages) as they flow through each PC
servlet.

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 36

2. Provide tools that can be used by the consumers and producers to pass meta-events
through the framework describing what is happening.

3. Standardise the existing jGMA logging to allow an external program to utilise the
information.

4. Create tools to trace and visualise the flow of events through jGMA. This would
require instrumentation code to be added to the jGMA software at every level of
the API

While it is not clear which solution is best to use yet, the log method would be the easiest
to implement, it also has the advantage of not requiring the monitoring software to be
integrated into jGMA, as the log parser can run as a separate program.

5.2.3 The Virtual Registry (VR)

Chapter 3 describes the current implementation of the jGMA’s registry implementation,
which is volatile and centralised. jGMA requires a fault tolerant distributed registry to
provide a fault tolerant and robust system. We discuss the two main areas that will be
studied to understand the underlying design issues in the following sections.

VR System Requirements

The jGMA system was designed to run with minimal configuration needs and tries to be
as flexible as possible in terms of functionality; the registry component should follow this
design objective. This means that a design requirement for the VR is that it should add
as little complexity as possible to the overall installation of jGMA.

VR requirements:

� Be scalable,
� Store sufficient information to be GMA compliant,
� Be secure, and prevent unauthorised access to the data,
� Require a minimum amount of configuration.
� Have no single point of failure,
� Be robust and tolerant of poor network access,
� Be optimised to return search results as quickly as possible,
� Have persistent storage for the registry back-end.

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 37

5.2.4 Standalone jGMA

To make jGMA as easy to install and use as possible the software should function as a
standalone system. This is especially useful where there is no permanent Internet con-
nection. One way to achieve this would be to include part of the registry (possibly all of
it) with the PC servlet with the standard jGMA software distribution.

Proposed VR Architecture

PC Servlet

Registry

Producer

Consumer

PC Servlet

Registry

Producer

Consumer

Application

Servlet

Local (Socket)

WAN (HTTP)

LAN (Socket)

Computer

Tomcat

Virtual Registry

Figure 5.2: The revised jGMA architecture; here each PC servlet has its own executing
registry component

5.2.5 The New Challenges for the Proposed Architecture

There are two main issues to investigate before the VR can be designed and implemented.
Since a centralised registry is not scalable more than one registry will be required, these
registry components will need a way to discover each before they can communicate. The
topology of the registry communication will need to be optimised to efficiently use the
VR.

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 38

Boot Strapping

In the initial implementation of jGMA, a single registry was used to store registration
information from every site. That is each PC servlet had the address of the registry hard-
wired into it. By including a registry component in the PC servlet the name discovery
problem becomes an issue for the registry because the PC servlet does not have to dis-
cover the registry if it has one included in it but the registry still needs to find a way to
join the jGMA network. Other systems have addressed the problem in different ways, two
common approaches are manually hardwiring remote addresses in each node or using a
number of address caching services.

An example of a centralised hard-wired registry is Jini when used over the wide area.
Jini uses multicast packet to discover the lookup service (its registry) when used on a
LAN, but when multicast is not available the, a hardwired unicast is used to interact with
lookup services.

The Gnutella protocol [33] uses a network of peer services with static addresses, which
cache the addresses of end points. Each peer is hardwired with the static addresses of
the caching services; when the peer joins the network it fetches a list of entry points by
from the caching services. The caching services are replicated to add redundancy to the
system. This solution is a practical way to provide nodes with sufficient information to
join the system; the current version of GridRM uses the same solution.

These are two examples of how different distributed systems handle the boot strapping
problem. This area requires further investigation to understand the existing solutions and
find an optimal way to solve this problem in the jGMA VR.

Registry Communication Topology

The second issue when designing the registry infrastructure is to select an optimum topol-
ogy for jGMA registries for efficient query routing. A query must search the information
stored in the VR in an efficient way.

In the initial implementation of jGMA, every PC servlet was connected to the one cen-
tralised registry. This meant that there was no partitioning of the registration information
and a single query of the registry would search every registered producer and consumer.
With a distributed VR queries must reach all of the registries necessary to perform the
search or some consumers and producers will not be found.

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 39

Although caching search information will affect the behaviour of the system, currently
we focus on communication between components of the VR. We aim to minimize the
number of hops a query must travel to search the entire registry in order to reduce the time
it takes to complete a search (minimise latency). Another requirement of the topology is
it must be self-healing, by this we mean should thief one or more of the registries fail, it
should have as minimal affect on the overall performance of the VR.

A B C

New node

Figure 5.3: A new node joining the system in three different communication topologies.

Figure 5.3 shows three possible node topologies. Each circle (node) could represent a
jGMA registry component.

� A) Centralised.
� B) Static tree.
� C) Dynamic tree.

A centralised system (Figure 5.3 A) is not acceptable for jGMA, as it represents a single
point of failure and is not scalable. As the number of nodes increases the performance
of the network decreases as the central node becomes overloaded. UDDI [34] can be
configured to use this topology.

In a static tree topology (Figure 5.3 B) the parent to child relationship is predefined. An
example of this is DNS [?]. The main problem with this topology is the number of nodes
at each level must be predefined in order to create an efficient hierarchy. If we use DNS
as an example, if there are too many sub-domains for a given domain the name space
becomes difficult to manage as the number of records increases.

In a dynamic tree (Figure 5.3 C) an algorithm determines the position of a new node in
the hierarchy. The Gnutella peer-to-peer protocol uses this mechanism to try and create
an efficient tree [36]. The topology attempts to arrange itself into an efficient structure at
runtime, based on trying to minimise the number of hops required to traverse the tree.

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 40

5.2.6 Summary

The two main issues when investigating the VR are how to design a scalable and effi-
cient communications topology. We need to determine the best topology and overcome
problems associated with boot strapping and efficient searching. These issues will be the
main focus of jGMA development in the near future.

5.3 Security

The information jGMA transports may be of a sensitive nature. There is a need to control
access to it and stop it from being intercepted and read, especially when it traverses
the Internet. Some jGMA design decisions already help the security of the system, for
instance the two-tier addressing prevents information about the layout of the LAN from
leaking into the WAN layer of jGMA; this is described in Chapter 3.

5.3.1 Encrypted Communications

Data passing through a medium beyond the physical control of an organisation can be
passively intercepted, read without changing the data. The integrity of the data can also
be compromised while it is in transit, which is an example of an active attack. This can be
prevented by the use of cryptographic tools. Encrypting communications using standard
industry tools, such as DES [37] or RSA [38], does not prevent the interception of data,
but stops it from being altered on route and prevents a third party from interpreting the
payload.

Currently HTTP is used for the WAN communication of jGMA, moving to the industry
standard HTTPS [39] would prevent the messages from being read or altered on route.

5.3.2 Authentication and Access Control

Some kind of access control is required to restrict which producers and consumers can
communicate with each other. It is unclear at what layer of jGMA this should be imple-
mented, whether it should be at the client level in the consumers/producers or provided
as part of the jGMA API. There are various grid standards for access control and security
one of which is Grid Security Infrastructure (GSI) [40], which was created as part of
the Globus project. It is desirable to use a standards-based approach for jGMA and GSI

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 41

seems a likely candidate because of its wide spread acceptance within the area of grid
arena.

5.3.3 Security Features of the jGMA Public API

Part of the contract provided by the jGMA API is to prevent itself from being used in
ways that it was not designed for. Specifically, care has been taken to implement and
ascertain parameters that will not allow the misuse of the API. Moreover, a layer of
abstraction between the users of the API and the implementation of the API enforces
the order in which the methods can be called. For instance, the API guarantees that a
consumer cannot send a message to the registry to unregister a different consumer.

5.4 Blocking API layer

As described in Chapter 3, the initial implementation of jGMA had a combined block-
ing and non-blocking API, that later had the blocking functionality removed to create a
simpler overall system. It was proposed that a blocking API be provided as new layer
between the client and the jGMA non-blocking API. This functionality is useful for us-
ing jGMA within system, which expect to control the flow of execution. However, it
is not essential for the further development of jGMA, since its consumers and produc-
ers all follow the event-driven (non-blocking) paradigm. The new blocking API will be
implemented after more important work, such as the VR, is completed.

5.5 Integration into GridRM

When jGMA used a combined blocking and non-blocking API it was tested with GridRM
across several remote sites. After the jGMA API was changed, GridRM could have been
altered to use the new API; however, because of the way GridRM was programmed it is
easier to integrate it again after the updated blocking layer has been completed.

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 42

5.6 A Grid Gaming Framework

Online distributed gaming has become increasingly popular with the wide spread uptake
of broadband. Games publishers have each tried to provide an infrastructure to support
their online games. There is an opportunity to develop a standard set of services, based
on a completed jGMA implementation, to support these games.

A potential set of services that online games may require includes:

� Searching: It is common to have large numbers of servers all running separate
games. The user client requires a service to index these games and allow searches
based on user-defined parameters such as the current map being played.

� Monitoring servers: Detecting problems with game servers such as large numbers
of players can allow the system to load balance or fail over. There needs to be some
infrastructure to do this reporting.

� Single sign-on. Many games track individual players to combat piracy. Providing
a unique identity for each player makes global high score tables and other statistic
tracking possible.

� Security: Authentication and authorisation have become serious problems in recent
years. The anti piracy mechanisms such as CD keys have been simple for malicious
users to circumnavigate. This creates problems for legitimate users who are barred
from the game network once their CD key has been copied.

After completion of the jGMA framework we intend to investigate the issues required to
provide an infrastructure for distributed online gaming using jGMA as a communications
layer.

5.7 Summary

The Virtual Registry (VR) is the most important component yet to be developed for
jGMA; it is also the most interesting component from a research perspective.

As the GMA implementation develops and matures the GGF may outline the necessary
API that will allow the GMA implementations to interoperate. jGMA has been designed
to be as flexible as possible; this will allow modifications for inter-operation with other
implementation to be made without major re-engineering.

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 43

R-GMA and pyGMA are both being changed to Web Services’ technologies. With the
widespread adoption of Web Services throughout the community it seems quite likely
that it will be used in a formal GMA protocol specification. jGMA has been written to
be efficient and fast. Whereas SOAP uses XML, which implies larger and more verbose
messages that will create additional overheads, consequently slowing communications.
If jGMA where to interact with other GMA implementations via Web Services a sepa-
rate translation gateway would probably be the efficient way of inter-operating without
slowing down jGMA messaging.

In the chapter we have discussed some implementation issues, which need to be ad-
dressed to complete the jGMA system. In the near future research into the infrastructure
will focus on the development of the VR, which is the most important jGMA component
yet to be developed.

References

[1] Foster, C. Kesselman, and S. Tuecke, The Anatomy of the Grid: Enabling Scalable
Virtual Organizations, International J. Supercomputer Applications, 15(3), 2001.

[2] GridRM, http: //gridrm.org/

[3] GMA, http://www-didc.lbl.gov/GGF-PERF/GMA-WG/

[4] Global Grid Forum, http://www.ggf.org

[5] GGF Performance Working Group, A Grid Monitoring Architecture, http://www-
didc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-16-2.pdf, 2002

[6] R-GMA, http://www.r-gma.org/

[7] Data Grid, http://www.eu-datagrid.org/

[8] R-GMA testbed, http://hepunx.rl.ac.uk/edg/wp3/testbed.html

[9] pyGMA, http://www-didc.lbl.gov/pyGMA/

[10] LBNL, http://www-didc.lbl.gov/

[11] Globus MDS, http://www.globus.org/mds/

[12] Globus, http://www.globus.org/mds/

[13] Open Grid Services Architecture, http://www.globus.org/ogsa/

[14] Network Weather Service, http://nws.npaci.edu/NWS/

[15] AutoPilot, http://www-pablo.cs.uiuc.edu/Project/Autopilot/Autopilot
Overview.htm‘

[16] University of Illinois Pablo Research Group, http://www-pablo.cs.ui uc.edu/

[17] Jython, http://www.jython.org/

44

REFERENCES 45

[18] Xindice, http://xml.apache.org/xindice/

[19] Apache Tomcat, http://jakarta.apache.org/tomcat/

[20] Beowulf Cluster, http://www.beowulf.org/

[21] More Efficient Serialization and RMI for Java (1999), Michael Philippsen, Bern-
hard Haumacher, Christian Nester, Concurrency: Practice and Experience volume
12

[22] Java NIO, http://java.sun.com/j2se/1.4.2/docs/guide/nio/

[23] RFC2616, Hypertext Transfer Protocol, HTTP/1.1,
http://www.w3.org/Protocols/rfc2616/rfc2616.html

[24] RFC1867, Form-based File Upload, HTML, http://www.ietf.org/rfc/rfc1867.txt

[25] Berkeley DB Java Edition, http://www.sleepycat.com/products/je.shtml

[26] Jini, http://www.jini.org/

[27] jGMA: A lightweight implementation of the Grid Monitoring Architecture, DSG
Technical Report, http://dsg.port.ac.uk/ mjeg/jGMA/jgma report2004.pdf

[28] W3C Document Object Model, http://www.w3.org/DOM/

[29] UK E-Science All Hands Meeting, http://www.allhands.org.uk/

[30] Download jGMA, http://dsg.port.ac.uk/projects/jGMA/software/index.php

[31] Jini, http://www.jini.org/

[32] Apache AXIS, http://ws.apache.org/axis/

[33] Gnutella, http://www.gnutella.com/

[34] Universal Description Discovery and Integration (UDDI), http://www.uddi.org/

[35] Domain Names - Implementation and Specification,
http://www.faqs.org/rfcs/rfc1035.html

[36] Mapping the Gnutella Network: Macroscopic Properties of Large-Scale Peer-to-
Peer Systems (2002), Matei Ripeanu, Ian Foster, IEEE Internet Computing Journal
Volume 6

[37] Data Encryption Standard (DES) , Federal Information Processing Standards Pub-
lication 46-2 (1993), http://www.itl.nist.gov/fipspubs/fip46-2.htm

REFERENCES 46

[38] Algorithms and Identifiers for the Internet X.509 Public Key Infras-
tructure Certificate and Certificate Revocation List (CRL) Profile,
http://www.faqs.org/rfcs/rfc3279.html

[39] HTTP Over TLS, http://www.faqs.org/rfcs/rfc2818.html

[40] Grid Security Infrastructure (GSI) , http://www-
unix.globus.org/toolkit/docs/3.2/gsi/index.html

Appendix A

Formal Training

A.0.1 Research Training

� Conference papers reviewed and discussed:

– Cluster 2003, http://www.cs.hku.hk/cluster2003/
– Grid 2003, http://www.gridcomputing.org/grid2003/
– KGGI WI Workshop, http://www.comp.hkbu.edu.hk/ william/KGGI03/
– AIMS 2004, http://w5.cs.uni-sb.de/ baus/aims04/
– DAPSYS 2004, http://www.lpds.sztaki.hu/dapsys/
– ASTC 2004, http://www.astc.org/conference/
– GCC 2004, http://grid.hust.edu.cn/gcc2004/
– CCGrid 2004, http://www-fp.mcs.anl.gov/ccgrid2004/
– Grid 2004, http://www.gridbus.org/grid2004/
– ADIS 2004
– Cluster 2004, http://grail.sdsc.edu/cluster2004/
– ISPA 2004, http://www.comp.polyu.edu.hk/ISPA04/

� A general literature survey and review of related research material.
� Took part in the e-Science OGSA Testbed project and its quarterly meetings

http://dsg.port.ac.uk/projects/ogsa-testbed/. Helped develop the project website
which received a bronze award at the 2004 UK e-Science All Hands Meeting.

� Deployed multiple versions of the Globus toolkit, and other grid-based software.
� Regular discussions with members of the DSG on research being undertaken.

A.0.2 Publications / Talks / Networking

Papers

47

APPENDIX A. FORMAL TRAINING 48

� jGMA: A lightweight implementation of the Grid Monitoring Architecture pub-
lished in the proceedings of the UK e-Science Programme All Hands Meeting 2004
for the Grid Performability Modelling and Measurement mini-workshop, Sept 01-
03 2004 - http://dsg.port.ac.uk/ mjeg/jGMA/jgma ahm2004.pdf

� jGMA: A lightweight implementation of the Grid Monitoring Architecture, tech-
nical report Sept. 2004 - http://dsg.port.ac.uk/ mjeg/jGMA/jgma report2004.pdf

� jGMA: A lightweight implementation of the Grid Monitoring Architecture, pub-
lished in the proceedings of the UKUUG LISA/Winter Conference, February 2004
- http://dsg.port.ac.uk/ mjeg/jGMA/jgma ukuug2004.pdf

Events/Meetings Attended

� Attended UK e-Science Programme All Hands Meeting 2004 - http://www.allhands.org.uk/
� Attended UKUUG Winter conference - http://www.ukuug.org/events/winter2004/
� Attended OGSA Testbed meetings

Talks/Presentations

� jGMA at UK e-Science Programme All Hands Meeting 2004
- http://www.nesc.ac.uk/events/ahm2004/presentations/71.ppt

� Invited talk on Grid Middleware at UKEA JET
- http://dsg.port.ac.uk/ mjeg/jGMA/jgma jet2004.ppt

� jGMA presented at UKUUG Winter conference
- http://dsg.port.ac.uk/ mjeg/jGMA/jgma ukuug2004.ppt

� Various DSG seminar talks

Mailing lists

� Globus discuss
� R-GMA datagrid project

	Table of Contents
	1 Introduction
	1.1 General Introduction
	1.2 Motivation
	1.3 GMA
	1.4 Summary

	2 Similar Work
	2.1 Standalone Implementations
	2.1.1 R-GMA (Relational Grid Monitoring Architecture)
	2.1.2 pyGMA (Python GMA)

	2.2 Embedded GMA Implementations
	2.3 Summary

	3 jGMA Design Criteria
	3.1 Introduction
	3.2 The jGMA Architecture
	3.2.1 jGMA Components

	3.3 Example WAN Communications
	3.4 The initial jGMA Implementation
	3.4.1 RMI
	3.4.2 Sockets (LAN)
	3.4.3 HTTP (WAN)
	3.4.4 Objects
	3.4.5 Naming
	3.4.6 The Registry

	3.5 The jGMA First Release
	3.5.1 Benchmarks
	3.5.2 Results

	3.6 The Revised jGMA Implementation
	3.6.1 Event Driven API
	3.6.2 Revised Naming
	3.6.3 Client and Servlet Liveliness

	3.7 Summary

	4 jGMA web-cam demo
	4.1 The Design
	4.1.1 The Architecture
	4.1.2 The Web-cam GUI
	4.1.3 The Web-cam Implementation
	4.1.4 A jGMA web-cam Producer and Consumer
	4.1.5 Writing the Interface

	4.2 Summary
	4.2.1 Problems with the Current Implementation
	4.2.2 Future Work

	5 Conclusions and Future Work
	5.1 Summary of Immediate Research Goals
	5.2 Future Research Directions
	5.2.1 Soft-state PC Servlet to Registry Leasing
	5.2.2 jGMA Monitoring
	5.2.3 The Virtual Registry (VR)
	5.2.4 Standalone jGMA
	5.2.5 The New Challenges for the Proposed Architecture
	5.2.6 Summary

	5.3 Security
	5.3.1 Encrypted Communications
	5.3.2 Authentication and Access Control
	5.3.3 Security Features of the jGMA Public API

	5.4 Blocking API layer
	5.5 Integration into GridRM
	5.6 A Grid Gaming Framework
	5.7 Summary

	Appendices
	A Formal Training
	A.0.1 Research Training
	A.0.2 Publications / Talks / Networking

