
A Virtual Registry For Wide-Area Messaging

Mark Baker
ACET, University of Reading, UK

mark.baker@computer.org

Matthew Grove
DSG, University of Portsmouth, UK

matthew.grove@port.ac.uk

Abstract

Tycho is a reference implementation of a combined ex-
tensible wide-area messaging framework with a built in dis-
tributed registry for publishing and discovering remote end-
points. This paper describes the architecture of Tycho as
well as the design and functionality of its Virtual Registry
(VR). We explain why we have designed Tycho to reuse ex-
isting infrastructure where possible and the advantages of
a messaging system with a built in registry. We discuss the
pluggable design of the VR and how that can be used to
provide inter-operation with other systems. After highlight-
ing our innovative use of the Internet Relay Chat protocol
within the VR, we present the results of a series of tests de-
signed to measure the performance of the VR. We then com-
pare the performance of Tycho with R-GMA and Globus’s
MDS4, which have similar functionality. The paper con-
cludes with a number of observations about Tycho’s VR per-
formance, functionality, and how these can be enhanced in
the future.

1 Introduction

Tycho is an extensible reference implementation of a
wide-area asynchronous messaging system with a built in
distributed registry. This combination allows Tycho to pro-
vide a range of key services for wide-area distributed appli-
cations that can essentially publish and discover endpoints,
as well as exchange information without the need for the
developer to use multiple libraries. Existing solutions typi-
cally use one of many communication mechanisms, for ex-
ample SOAP [1] or GridFTP [2] coupled with a separate
registry such as UDDI [3] or Globus’s MDS4 [4] to provide
service discovery. The objective of the Tycho project is to
produce a combined asynchronous messaging API and reg-
istry system that frees developers from the need to assemble
their application from a range of potentially diverse middle-
ware offerings, which should simplify and speed applica-
tion development and more importantly allow developers to
concentrate on their domain of expertise. We believe that

this combined approach, i.e. providing a messaging API
and a virtualized registry that utilises existing infrastructure
where possible is novel.

The design of Tycho is such that even though a default
registry and protocols are provided, the system can be easily
adapted to incorporate other registry technologies and trans-
port protocols. Our design philosophy has been to keep the
core of Tycho relatively small, simple and efficient, so that
it has a minimal memory foot-print, it is easy to install, and
is capable of providing robust and reliable services. More
sophisticated services can then be built on Tycho’s core and
provided via libraries and tools to applications. We limit the
use of external dependencies, such as libraries, in order to
simplify the use of Tycho. Currently, we have incorporated
all of its functionality within a single Java Jar with the only
requirement being a Java 5 JDK for building and running
Tycho applications.

Previous work on Tycho [5] has concentrated on mea-
suring and optimising the message-passing performance of
the system. We have run a series of tests on both the Tycho
messaging sub-system and the NaradaBrokering [6] frame-
work. Our results showed that Tycho and scales well, both
with increasing message sizes and number of simultaneous
clients without requiring the Java heap size to be increased.

In this paper we compare and contrast Tycho’s virtual
registry to two other popular systems with similar charac-
teristic; namely R-GMA, part of the gLite middleware, and
MDS4 which is part of the Globus Toolkit. In Section 2, we
outline the architecture of R-GMA and MDS4. The archi-
tecture of Tycho’s virtual registry is outlined in Section 3. In
Section 4, we describe the performance tests we undertook
on the three systems and then discuss the results obtained.
Finally, in Section 5, we summarise and conclude the paper,
present some details on how Tycho is currently being used
and then outline some future work.

2 Related Work

Registries (or discovery services) form an integral part
of all distributed systems. A registry is a unifying com-
ponent that allows entities to publish their presence, which

1-4244-0328-6/06/$20.00 c©2006 IEEE.

others can then later search for and bind with. In modern
distributed systems, with large numbers of clients and re-
sources, there is likely to be the need to publish many enti-
ties within the registry. Consequently a registry must have
some intelligence, as it will not be appropriate for a reg-
istry to publish a list of all known entities held; clients must
be able restrict the number of results by providing some at-
tributes which the registry will use to filter the matching
results. It is also clear that a registry needs a scalable archi-
tecture itself, as a single server will become a bottleneck if
there are millions of entities held in its database with large
numbers of clients regularly undertaking searches.

Two popular systems, which provide registries as part of
their services, are gLite, which uses R-GMA and the Globus
Toolkit, which uses MDS4. The aim of both of these sys-
tems is to simplify the process of binding grid services to-
gether by providing a standards-based approach publishing,
searching and binding clients to their desired services. In
this section we describe these two systems, outline their ar-
chitecture and describe their features.

2.1 R-GMA

R-GMA [7] was originally developed within the Eu-
ropean DataGrid Project [8] as a grid information and
monitoring service. R-GMA uses a relational model to
search, (using SQL as a query language) and describe the
monitoring information it collects. It is based on a con-
sumer/producer paradigm with client data being stored in a
directory service, which presents the information as a vir-
tual database. R-GMA uses a global schema, to define
tables for storing data, which can be updated to contain
project specific values. The current stable release of R-
GMA (in gLite 1.5) is based on Java servlets; a more ad-
vanced version is under development using Web Services
and SOAP for messaging.

The current stable release of R-GMA uses a set of Java
servlets to implement the registry and provide services to
producers and consumers. A producer’s client publishes
data (tuples) via the producer servlet, when a consumer’s
client performs a query; the consumer servlet performs the
query and receives the tuples marked up in XML, it then
stores responses in a queue. The consumer’s client can then
’pop’ the tuples from this queue to receive them. In this way
the clients of the producer and consumer never interact di-
rectly, with the servlets mediating the process of publishing,
querying and receiving data.

The servlets use a MySQL database to store tuples and
meta information such as the schema. It is possible to spec-
ify that tuples are stored in memory rather than the persis-
tent database when the producer publishes them. Repub-
lishers can manually be configured to allow remote queries
from other R-GMA installations.

2.2 MDS4

The Globus Toolkit’s [9] Monitoring and Discovery Ser-
vice (MDS version 4) is a WSRF [10]-based implementa-
tion of an information and registry service. MDS4 provides
a framework that can be used to collect, index and expose
data about the state of grid resources and services.

MDS4 uses an index service for gathering resource in-
formation and provides a WSRF interface for clients to
query and subscribe to information collected by the service.
MDS4 is typically used for monitoring resources within a
virtual organisation. The MDS4 functionality is provided
by an aggregator framework, which is based on two ser-
vices; an index service for collecting and discovering in-
formation about resources and a trigger service, which can
be configured to perform actions based on resource infor-
mation. MDS4 uses a fixed schema to ensure compatibility
between its components, every participating MDS must be
configured to use the same schema. The index information
itself is stored in memory.

Grid services can publish resource properties into
MDS4; these properties are defined in the service’s WSDL.
An MDS4 client can query the index service using an
XPath query that will retrieve matching resource proper-
ties marked up as XML. MDS4 uses a soft state consistency
model to renew information published resources at a con-
figurable interval.

2.3 Summary

In this section, we have briefly outlined two systems,
which contain registries for publishing information about
resources. MDS4 and R-GMA can be used more generi-
cally for services other than monitoring. The fixed global
(system wide) MDS4 schema limits the type of information
that can be published into the MDS. R-GMA also uses a
global schema, but it is designed to be simple to configure
for new types of information. This facet could be described
as a project wide schema as it is used by every client con-
nected to the R-GMA virtual database. In Tycho we allow
the schema to be defined on a per client basis at run time.
This removes the need for each Tycho instance participating
in a system to be manually configured to ensure the correct
schema is being used, this is explained in more detail in
Section 3.1

3 Tycho’s Architecture

Tycho is a Java-based wide-area messaging and reg-
istry framework based on a publish, subscribe and bind
paradigm. Tycho consists of the following components:

• Mediators that allow producers and consumers to dis-
cover each other and establish remote communica-
tions,

• Consumers typically subscribe to receive information
or events from producers,

• Producers gather and publish information for con-
sumers.

In Tycho, producers and/or consumers (clients) can pub-
lish their existence in a directory service known as the Vir-
tual Registry (VR). A client uses the VR to locate other
clients, which will act as a source or sink for the data they
are interested in. The VR is a distributed service provided
by a network of mediators. When possible, clients commu-
nicate directly, however for clients that do not have direct
access to the Internet, the mediator provides wide-area con-
nectivity by acting as a gateway or proxy into a localised Ty-
cho installation. The messaging layer and its performance
compared to that of Naradabrokering is described in more
detail in [5]. Figure 1 shows Tycho clients communicating
between two remote sites connected via the Internet. You
can also see local clients communicating directly, bypass-
ing the mediators.

Consumer or

Producer

Mediator

WAN Message

LAN Message

Registry Msg

VR Network

Figure 1. Tycho consumers and producers
communicating over the Internet.

3.1 The Tycho VR

The Tycho VR is made up of a collection of pluggable
services that provide for the management of client informa-
tion and facilitate locating and querying remote Tycho in-
stallations. Clients register with the VR component within
a local mediator when they start-up. The VR provides a lo-
cally unique name for each client and periodically checks
registered clients to ensure their liveliness, removing stale
entries if necessary.

The VR consists of the following components:

• The transport handler allows different transport pro-
tocols to be used between Tycho producers, con-
sumers, mediators, and the VR. Currently the trans-
port handler supports TCP sockets, HTTP (partly pro-
vided using an embedded instance of Jetty [11]) and
Internet Relay Chat (IRC). Transport handler function-
ality can be extended by effectively creating a driver
for each new protocol. It is possible to have more than
one transport handler running at a time, as protocol de-
scriptions are encoded in the URL of each end-point,
which allows the selection of the appropriate transport
handler for each protocol in use. For example, to add
support for SOAP or HTTPS, an appropriate driver
would be developed (or retrieved from a driver library)
and plugged into the Tycho framework.

• The local store provides an abstract interface to a me-
diator’s information store. The store itself can be im-
plemented using a variety of data storage technolo-
gies. Currently Tycho provides a JDBC-based stor-
age medium and an in-memory data structure (sim-
ple store). JDBC permits the use of a range of SQL
storage technologies ranging from Oracle to MySQL.
The in-memory implementation is provided to sim-
plify the deployment of Tycho in situations where a
JDBC-based database is unavailable. The JDBC store
has been configured to make use of indexes to improve
performance; the simple store takes a more naive ap-
proach, which will be appropriate for small numbers of
records. The local store could also be implemented us-
ing LDAP [12], or RDF [13], depending upon a site’s
particular requirements.

• The query parser and result annotator components
translate queries and responses into an intermediate in-
ternal format in order to allow Tycho to support differ-
ent query languages and permit interoperability with
other systems in the future. Tycho currently supports
a subset of the ANSI-SQL query language and LDIF
[14] as a response mark up.

When a mediator receives a query from a client, it per-
forms a look up against locally registered entities, and then

potentially dispatches the query to the rest of the VR. The
local mediator requires a bootstrap service for locating other
mediators and a transport handler for dispatching queries,
which must be tolerant of mediator failures. Together, these
services are provided by what we call the VR-interconnect,
of which there are currently two:

• HTTP: This interconnect uses a well-known server to
maintain a list of existing mediators within the VR,
which it uses to bootstrap a new mediator. Inter-
mediator communication is provided by the HTTP
transport handler, which dispatches queries to remote
mediators by sending messages serially to all media-
tors. This approach is not expected to be fault toler-
ant or the most scalable, but we expect good perfor-
mance when transporting large queries as the transport
handler has previously been optimised during earlier
work. Currently access to the HTTP-interconnect can
be restricted by placing Tycho behind a proxy server
configured to require authentication.

• IRC: This interconnect uses a dynamic discovery pro-
cess based on Internet Relay Chat (IRC); the service is
discussed in detail in Section 3.2.

Tycho’s VR provides:

• Information for uniquely identifying a client,

• URLs that are used by the transport handlers to locate
and communicate with a client,

• A schema field, which can be used to store informa-
tion about the capabilities of a producer or consumer.
We expect this field to typically contain an XML doc-
ument that can be searched through as part of a nor-
mal query. This approach provides greater function-
ality than other similar registries that typically use a
single registry schema for all client records, for ex-
ample MDS4. This approach allows Tycho to support
a range of application’s needs simultaneously within
a VR without having to rely on manual configuration
changes.

3.2 IRC VR-Interconnect

IRC networks [15] typically have groups of servers con-
nected in a graph topology, which can be configured to route
messages and provide fault tolerant capabilities. For exam-
ple, QuakeNet, can support many hundreds of thousands
of clients simultaneously [16]. The IRC DNS servers can
be bound to a pool of IRC servers to provide load balancing
based on server load and geographic location. A DNS query
will then respond with the address of a ’suitable’ lightly

loaded server. Alternatively, by using a database of IP ad-
dress prefixes, it can provide the address of a server that is
geographically close to the client. In the event that a server
becomes unavailable, DNS can be used to direct a client to
available servers.

Tycho uses the combination of DNS records and the IRC
servers to bootstrap the VR. This provides the VR service
with a measure of fault tolerance, as it avoids a single point
of failure, provides scalability and importantly by-passes
the need to install servers to provide the functionality re-
quired by Tycho. An IRC client (bot) is then used by the
VR to locate and communicate with other instances of the
registry within the VR. Figure 2 illustrates this process:

IRCD

Consumer or

Producer

Mediator

WAN Message

LAN Message

Registry Msg

DNS

IRCD

IRCD
 IRCD

IRCD
IRCD

(3,4,5)

(5)

(1)
(2,4)

Figure 2. The steps a consumer takes to dis-
cover a producer using the IRC VR.

1. When the mediator is started, an IRC bot uses DNS in-
formation to locate a server and joins the IRC network.

2. The IRC bot attempts to join a pre-determined IRC
channel.

3. A consumer will register itself with its local mediator.

4. (a) The consumer sends a query for producers to its
local mediator.

(b) The IRC bot within the local mediator sends the
query to the IRC server, which broadcasts it to
other bots associated with remote mediators.

(c) The query is run against the local data store at
each mediator and matches are sent back over
IRC and delivered to the consumer.

5. The consumer communicates with the producer via the
mediator, in this case using a combination of sockets
and HTTP.

IRC servers can be configured to use encryption to pro-
tect messages while in transit over the Internet. If a pub-
lic IRC network is used for Tycho there are various ser-
vices provided to help prevent unauthorised access to the
VR bots. The channel through which the bots communicate
can be password protected and bots can communicate using
’private messages’, which the IRC network does not expose
to other parties. Higher levels of security can be provided
with a private IRC network, which allows the maximum
amount of control over the security of the system, although
it also adds the administrative overhead of maintaining an
IRC network.

4 Performance Evaluation

The aims of the performance evaluation are firstly to
compare the different implementations of both the Tycho lo-
cal stores and the VR-interconnects in order to assess which
offers the best performance in different situations. Sec-
ondly to measure the performance of the registries under
load (with multiple simultaneous clients) and how they per-
form with increasing numbers of records in the registries.

We test Tycho against R-GMA and MDS4 in order to
show that our philosophy of keeping the core functionality
as simple as possible yields performance gains over other
systems while still supporting the registry functionality re-
quired. In Tycho, more complex functionality is added to
the edge of the implementation rather than by increasing
the complexity of the core, thus is it is essential that the
core perform well.

4.1 Configuration

Tycho, MDS4 and R-GMA all use different terminology
to describe the same functional components. In the follow-
ing sections we use the label ’registry’ to refer the collec-
tion of services each system uses to provide registry func-
tionality. For Tycho this is the mediator, for MDS4, the
container running the MDS4 services and for R-GMA the
Tomcat container running the registry and schema servlets.
We call programs interacting with the registry ’clients’.

We generated a set of randomly generated strings to act
as attributes for records to be inserted into the registries for
the tests. A single record, with no mark up, had an average
size of 114 bytes.

Two different queries are used to test the registry per-
formance. The first [S1] simulates a client searching the
registry for records matching some known attributes. Sys-
tematic queries are generated using a function to select a
record name at random from the test data to guarantee the
query will only match one record. In Tycho this is specified
using the following SQL: SELECT * FROM clients
WHERE name=’randname’;

The second query [S2] measures the worst case scenario
of the client requesting all of the records from within the
registry. This type of query will highlight the effect on client
to registry communication, as the message response size in-
creases with the number of records in the registry. In Ty-
cho this is specified using the following SQL: SELECT *
FROM clients;

By configuring the Tycho core VR services, described
in Section 3.1, and arranging these components in differ-
ent ways we have been able to test the performance of the
Tycho’s VR under variety of different circumstances and
compare it to the performance or MDS4 and R-GMA. In
Section 4.2, we outline the measurements of interest and
how the components were arranged to perform each test.

4.2 Methodology

A nine-node cluster was used to perform the perfor-
mance tests. Each node has dual 2.8 GHz Xeon proces-
sors connected by Fast Ethernet with 2 Gbytes of RAM.
The cluster uses Debian Linux 3.1, with the 2.4.32 kernel.
Java 5 was used for Tycho and MDS4 (Sun’s JVM version
1.5.0-b64), R-GMA requires Sun JVM 1.4.2 06. Software
versions used were Tycho 0.7.3, MDS4 from Globus 4.0.1
and R-GMA from gLite 1.5. All three systems were run
with their security features disabled.

Figure 3 shows how the components were arranged on
the cluster for the tests. Node 0 is the cluster’s head node,
and node 1 to N are the other nodes.

Test 1 - Local stores: In this test the number of produc-
ers registered in a single mediator on one cluster node was
varied from 10 to 100,000. A Tycho client on a second clus-
ter node queried the VR using the two different SQL queries
(S1 and S2). The test aims to measures the performance of
the different back-end stores to show which one performs
best under different circumstances. The test was repeated
for each different store. The time to complete each query
was recorded.

Test 2 - VR-interconnects: In this test a single Ty-
cho client on one node queried the whole VR for a single
record. The VR was made up of 1-1000 mediators evenly
distributed on the compute nodes. Each mediator contained
1000 records so as the number of mediators increased so did
the total size of the VR (reaching a maximum of 100,000 to-
tal records when using 1000 mediators). This test measures

Node 0
 Node 1
 Node 2
 Node N

Registry
 Client

C

IRCD
Te
st

 2

C

Te
st

 1
&

3

C
C
C

Te
st

 4

C
C
C

C
C
C

IRCD
 IRC Daemon

Figure 3. Test configurations.

the performance of the Tycho VR as the number of media-
tors in the system is increased. We tested the two different
VR interconnect protocols, IRC and HTTP, with caching on
and off. When testing IRC we used an open source IRC
daemon called ngIRCd [17]. The average response time for
a query was measured.

Test 3 - Records: We repeated test 1 using R-GMA and
MDS4, we used Tycho with the HSQLDB store for compar-
ison because it currently provides the best results for an in
memory store. In this test the number of records published
into a single registry on one cluster node was varied from
10 to 100,000. A client on a second cluster node queried
the registry using the two different types of queries (S1 and
S2). The test aims to measure the performance of the differ-
ent registries with increasing numbers of records. The time
to complete each query was recorded.

Test 4 - Clients: In this test the three registries were
loaded with 1000 records and the number of clients per-
forming simultaneous queries was varied from 1-1000. The
registry was run on one node and the clients were evenly
distributed amongst the eight other nodes. This test mea-
sured the effect of increasing the number of simultaneous
queries on a single registry; it attempts to show how well
a single registry copes with increasing numbers of local
clients. The time to complete a query was measured.

The tests were managed with shell scripts, which used
SSH to execute the correct test components on each ma-
chine. In tests 2 and 4 the clients and registries were evenly
distributed using a round-robin approach between the com-
pute nodes. So for example, if testing 64 clients, each com-

pute node had 8 clients. The cluster was monitored us-
ing Ganglia to provide information such as memory usage.
Each test was repeated 10,000 times and the benchmarks
were written so that the time to bootstrap the test did not
interfere with the measurements being gathered. For Ty-
cho, the JVM was invoked with no command line options.
With MDS4 and R-GMA, when the default heap size was
exhausted the tests were repeated using up to a maximum
heap of size 1.5 Gbytes. The Java timer used in the tests
had microsecond resolution. All the times shown are in mil-
liseconds (ms).

4.3 Analysis of Test Results

4.3.1 Test 1 (Tycho)

100000

10000

1000

100

10

1
 0 20000 40000 60000 80000 100000

R
es

po
ns

e
Ti

m
e

(M
ill

is
ec

on
ds

) L
og

 S
ca

le

Number Of Records

HSQLDB
MySQL
Simple

Figure 4. Response time (ms) versus the num-
ber of records using different data stores for
queries that select a single random record.

When a single random record is retrieved from a store
(Figure 4) the response time remains constant at around 3.5
ms for both HSQLDB and MySQL. This is because they are
both able to hash directly (see Section 3.1) to the required
record using indexing. Whereas the Simple store iteratively
checks every record, as it does not use indexing.

When selecting all of the records (Figure 5) the perfor-
mance for all three stores are comparable until around 5000
records. At 100,000 records, (a 10.59 Mbyte response) the
Simple store is 1550 ms faster than MySQL and 1350 ms
faster than HSQLDB. The Simple store is fastest because it
does not have the overhead of using JDBC to retrieve the
records. The Simple store at 70,000 records (a 8.45 Mbyte
response) shows a jump of 2000 ms. The exact cause of this
is unknown, but we suspect it is due to the increasing size
of the Java String objects within the store, and the effect of
garbage collector attempting to recover memory.

100000

10000

1000

100

10

1
 0 20000 40000 60000 80000 100000

R
es

po
ns

e
Ti

m
e

(M
ill

is
ec

on
ds

) L
og

 S
ca

le

Number Of Records

HSQLDB
MySQL
Simple

Figure 5. Response Time (ms) versus the
number of records using different data stores
for queries that select all records.

4.3.2 Test 2 (Tycho)

100000

10000

1000

100

10

1
 0 200 400 600 800 1000

R
es

po
ns

e
Ti

m
e

(M
ill

is
ec

on
ds

) L
og

 S
ca

le

Number Of Mediators

IRC Cache Off
HTTP Cache Off

IRC Cache On

Figure 6. Response time (ms) versus the num-
ber of mediators.

Figure 6 shows the effect on response time as the num-
ber of mediators and records in the VR is increased. For
HTTP (no caching) an extra 1.24 ms is added per new me-
diator. This performance is attributed to the serial way the
HTTP dispatches queries to other mediators. With IRC (no
caching) until 500 mediators (50,0000 records) each ex-
tra mediator and 1000 records add on average 0.41 ms to
the response time. The peak at 500 mediators for IRC (no
caching) marks the point where the test cluster consumed its
available RAM and started to use swap space. The marked
difference between the performance of IRC and HTTP is

mainly because queries are sent to the mediators in parallel
by the IRC daemon as opposed to serially for HTTP. IRC
(caching on) has the lowest average response time adding
approximately 0.13 ms for each extra mediator.

4.3.3 Test 3 (Tycho, R-GMA and MDS4)

100000

10000

1000

100

10

1
10000010000100010010

R
es

po
ns

e
Ti

m
e

(M
ill

is
ec

on
ds

) L
og

 S
ca

le

Number Of Records, Log Scale

Tycho
R-GMA
MDS4

Figure 7. Response time (ms) versus the num-
ber of records for queries that select a single
random record.

100000

10000

1000

100

10

1
10000010000100010010

R
es

po
ns

e
Ti

m
e

(M
ill

is
ec

on
ds

) L
og

 S
ca

le

Number Of Records, Log Scale

Tycho
R-GMA
MDS4

Figure 8. Response Time (ms) versus the
number of records for queries that select all
records.

Figures 7 and 8 shows the effect on response time when
increasing the number of records in the registry of Tycho,
R-GMA and MDS4. In Figure 7 a single random record is
being selected. Tycho has a constant response time of 3.5

ms, this is consistent with Test 1 which showed that for up to
100,000 records HSQLDB has a constant overhead for this
simple query. R-GMA has a fixed query time of 1400 ms up
to 20,000 records at which point it increases steadily to 2314
ms for 100,000 records. Unlike R-GMA and Tycho, MDS4
response time increases with every extra record. It starts
with a query time of 21.06 ms for 10 records and increases
steadily to 5095 ms for 4000 records. After 4000 records
the Globus container executing the MDS4 services gave an
out of heap error with the heap size set to the maximum
supported by the test hardware of 1.5 Gbytes.

Figure 8 uses the same test data as the previous test,
but the query being run selects all of the records in the in-
dex. Both Tycho and MDS4 have a constant increase in re-
sponse time in relation to the number of records with Tycho
increasing by around 0.08 ms per record and MDS4 1.93
ms. R-GMA has a constant response time of approximately
1462 ms for up to 2000 records, this can probably be at-
tributed to some kind of fixed cost in the implementation.
After this point the response time increases steadily up to
42,871 ms for 100,000 records, which is 32,973 ms more
than Tycho.

It is interesting to note that the curves for MDS4, for
both types of query, track each other closely. The differ-
ence increases from 71.6 ms for 100 records, up to 6208 ms
for 4000 records. We believe this is because the network
latency has a greater impact for the larger response size as-
sociated with the select all query.

4.3.4 Test 4 (Tycho, R-GMA and MDS4)

1000000

100000

10000

1000

100

10

1
100050025010050251051

R
es

po
ns

e
Ti

m
e

(M
ill

is
ec

on
ds

) L
og

 S
ca

le

Number Of Clients, Log Scale

Tycho
R-GMA
MDS4

Figure 9. Response time (ms) versus the num-
ber of clients concurrently querying a single
mediator.

Figure 9 shows the relationship between the query re-
sponse time as the number of concurrent clients that query

a single registry. increases. For Tycho the response time
increases by on average 2.3 ms per additional client. The
response time for MDS4 is on average a extra 14,077 ms
higher than Tycho, and for each additional client approxi-
mately 655 ms is added. R-GMA has an additional 20,094
ms latency than Tycho for the same number of clients (6016
ms higher than MDS4) with an increase of 989 ms to the re-
sponse time per concurrent client. When testing R-GMA,
after 150 clients the registry servlet crashed with an out
of stack memory error preventing us from completing the
tests up to 1000 clients. We believe this is due to the rapid
creation and destruction of the R-GMA consumers, the test
code selects a random record per iteration and in R-GMA a
new consumer must be created to run a different query.

5 Summary and Conclusions

In this paper, we have described our motivation for de-
veloping Tycho with its combined wide-area messaging
framework and built-in distributed registry (VR). We out-
lined the architecture of Tycho, which allows it provide a
range of services and explained the design and functionality
of the VR. The results of benchmarks, comparing Tycho’s
registry with R-GMA and MDS4, as well as more extensive
tests have been presented and discussed.

Tests 1 and 2 (Section 4.3.1 and 4.3.2) measured the per-
formance of the different component implementations cur-
rently supported by the Tycho VR in a range of configu-
rations. The Simple store performed best for small num-
bers of records, but HSQDL and MySQL scale better with
number of records. The Simple store could be improved by
making the internal search mechanism more intelligent, for
example using hashing.

The IRC interconnect performed better when routing
queries between mediators than HTTP. For 1000 mediators,
the response time was 778 ms faster, and with caching the
latency was reduced by a further 220 ms. The HTTP in-
terconnect could be improved by sending queries to medi-
ators in parallel and the IRC-interconnect could be further
improved by using multiple IRC channels to provide a net-
work overlay to allow more efficient message routing. The
HTTP-interconnect can perform better than IRC as message
response size increases, this is a result of the IRC having to
split the response into multiple messages due to limitations
of the IRC protocol. One solution to overcome these issues
would be to use a hybrid VR-interconnect using a combi-
nation of transport handlers to exploit the strengths of the
different approaches, i.e. using IRC to route queries and
HTTP to deliver responses over a certain size.

When testing the effect of number of records on response
size (Section 4.3.3 we see that when selecting a single
record from 100,000, Tycho responds 32 seconds faster than
R-GMA. MDS4 runs out of heap space for larger records

sizes, which suggests that they should look at either storing
the data more efficiently or moving to a file backed store
that is not limited by heap size. The results of testing the
Tycho stores using HSQLDB, MySQL and the Simple Java
store show that HSQLDB performs best, perhaps R-GMA
should consider using this store instead MySQL too.

In the multiple client tests (Section 4.3.4) Tycho’s VR
had a lower response latency than R-GMA and MDS4. With
100 clients Tycho was 94 seconds faster than R-GMA and
65 seconds faster than MDS4. The results highlight that one
of the strengths of our implementation is its performance
under load. Tycho’s performance is linear with regard to
both increasing numbers of clients and response sizes.

MDS4 also uses a global schema which must be con-
sistent in every MDS4 instance for interoperability, this re-
duces its flexibility. R-GMA is the closest match to Tycho’s
architecture although it does not allow for the same level of
flexibility with regard to the data it can store as the schema
is global to the R-GMA system and must be configured be-
fore records can be inserted.

As mentioned in Section 3, Tycho can leverage the se-
curity features of existing tools such as those provided by
the IRC daemon or a HTTP proxy to prevent unauthorised
access to the VR. In keeping with the design philosophy of
Tycho we are looking for ways to incorporate established
security mechanisms into the VR to provide more advanced
security features, one possible route is to provide a service
to provide WS-Security compatible functionality.

5.1 Tycho’s Use in Other Systems

Tycho is being used to provide service discovery for the
VOTechBroker [18], which is part of the European Virtual
Observatory [19] project. The Virtual Observatory will al-
low astronomers global access via a web portal to various
astronomical data archives. The VOTechBroker facilitates
the use of existing infrastructure to execute jobs submitted
through a web interface. Participating sites publish capa-
bilities, such as the batch submission details via a Tycho
producer; the VOTechBroker uses a Tycho consumer to dis-
cover the remote resources and uses the capabilities pub-
lished via Tycho to select a site to submit the jobs. We
expect the process of integrating Tycho with other systems
such as the VOTechBroker will lead to the development of
more sophisticated tools and services, such as aggregate and
multi threaded producers.

Tycho [20] is currently available as a binary release to
developers interested in investigating and further enhancing
its capabilities.

5.2 Future Work

Even though Tycho’s registry performance is better then
both MDS4 and R-GMA, there are still an number of areas
that we feel could be improved.

One way to improve performance is altering caching
in the mediator to include local data-store queries in ad-
dition to remote responses. Adding indexing to the Sim-
ple store would improve its performance when searching
for records. In addition, the message-passing performance
could be improved by changing the socket transport handler
to use thread pooling to further reduce the cost of sending
messages.

In the future, we will add functionality into Tycho to
provide services that are more advanced. One key area is
to develop transport handlers that support SSL sockets or
HTTPS to provide secure communication. Other features
may include support for transactions, various Web Services
specifications, for example WS-notification, and produc-
ers/consumers that are suitable for computational steering.

Acknowledgements

This research was supported in part by the Grid Tech-
nology Group of the CCLRC e-Science Centre, Daresbury
Laboratory, UK.

References

[1] SOAP Version 1.2 Part 1: Messaging Framework,
June, 2003, http://www.w3.org/TR/soap12-part1/,
W3C Recommendation.

[2] The Globus Toolkit, GridFTP, accessed 07 July 2006,
http://www.globus.org/toolkit/docs/4.0/data/gridftp/.

[3] OASIS, UDDI Version 2.03 Replication
Specification, July, 2002, UDDI Committee
Specification.

[4] J. Schopf, I. Raicu, L. Pearlman, N. Miller, C.
Kesselman, I. Foster and M. D’Arc, Monitoring and
Discovery in a Web Services Framework:
Functionality and Performance of Globus Toolkit
MDS4, January, 2006, Argonne National Laboratory.

[5] M.A. Baker, M. Grove and R. Lakhoo, A Preliminary
Performance Evaluation of jGMA With the
NaradaBrokering Framework, Technical Report, June
2005.

[6] S. Pallickara and G. Fox, NaradaBrokering: A
Middleware Framework and Architecture for
Enabling Durable Peer-to-Peer Grids, Proceedings of

ACM/IFIP/USENIX International Middleware
Conference Middleware-2003. pp 41-61, Lecture
Notes in Computer Science 2672 Springer 2003,
ISBN 3-540-40317-5.

[7] A.W. Cooke, et al, The Relational Grid Monitoring
Architecture: Mediating Information about the Grid,
Journal of Grid Computing, 2, 323-339, 2004.

[8] The DataGrid Project, accessed 30 May 2006,
http://eu-datagrid.web.cern.ch/eu-datagrid/.

[9] I. Foster, Globus Toolkit Version 4: Software for
Service-Oriented Systems, 2005, IFIP International
Conference on Network and Parallel Computing,
Springer-Verlag.

[10] OASIS, Web Services Resource Framework (WSRF)
- Primer 1.2, May, 2006.

[11] Jetty, accessed 30 May 2006,
http://jetty.mortbay.org/jetty/.

[12] OpenLDAP, accessed 07 July 2006,
http://www.openldap.org/.

[13] Resource Description Framework (RDF), accessed 30
May 2006, http://www.w3.org/RDF/.

[14] G. Good, RFC 2849 - The LDAP Data Interchange
Format (LDIF) - Technical Specification, June, 2000,
http://www.faqs.org/rfcs/rfc2849.html, RFC.

[15] J. Oikarinen and D. Reed, RFC 1459 - Internet Relay
Chat Protocol, May, 1993,
http://www.faqs.org/rfcs/rfc1459.html, RFC.

[16] irc.netsplit.de - IRC search engine and statistics,
accessed 07 July 2006,
http://irc.netsplit.de/networks/.

[17] ngIRCd: Next Generation IRC Daemon, accessed 07
July 2006, http://ngircd.barton.de/.

[18] The VOTechBroker (VOTB) Project, accessed 07
July 2006, http://dsg.port.ac.uk/projects/votb/

[19] European Virtual Observatory, accessed 07 July
2006, http://euro-vo.org/.

[20] Tycho - A Wide-area Distributed Messaging
Framework, accessed 07 July 2006,
http://dsg.port.ac.uk/projects/tycho/.

