
jGMA: A Reference Implementation of the
Grid Monitoring Architecture

Progression from MPhil to PhD Document

Matthew Grove (matthew.grove@port.ac.uk)

Distributed Systems Group, University of Portsmouth

Registration Period
01 October 2003 to 30 September 2004

Date Submitted
6 October 2004

Table of Contents

1 Statement of Aims 1

1.1 Research Objective . 1

2 Background and Review 1

2.1 Standalone Implementations . 2

2.1.1 R-GMA (Relational Grid Monitoring Architecture) 2

2.1.2 pyGMA (Python GMA) . 2

2.2 Embedded GMA Implementations . 3

2.3 Summary . 3

3 The Prototype Architecture 3

3.1 Introduction . 3

3.2 The jGMA architecture . 4

3.2.1 jGMA components . 4

3.3 The revised jGMA implementation . 5

3.3.1 The Non-Blocking API . 5

3.3.2 Revised naming . 6

3.3.3 Client and Servlet Liveliness . 6

3.4 Summary . 7

4 Research Outline 7

5 Research Timetable (Future Research Directions) 7

5.1 Soft-state leasing . 7

5.2 jGMA monitoring . 8

5.3 The Virtual Registry (VR) . 8

5.3.1 The challenges for the proposed architecture . 9

5.4 Security . 10

5.5 The Blocking API . 10

5.6 Integration into GridRM . 10

5.7 A Grid Gaming Framework . 10

6 Formal Training 11

6.1 Research Training . 11

6.2 Publications / Talks / Networking . 12

7 Conclusion 12

References 12

2

1 Statement of Aims

The aims of this project are to study, investigate, and then develop a framework for transporting information
around a distributed and heterogeneous system.

Wide-area distributed systems require scalable mechanisms that can be used to gather and distribute infor-
mation to a variety of endpoints. The emerging Grid infrastructure is rapidly being taken up for technical
computing as well as in business and commerce. The Distributed Systems Group for the last few years been
developing a resource monitoring system known as GridRM [1], which needs to distribute information over
the wide-area, between so called, GridRM gateways.

This project will attempt to create a messaging system based on emerging grid standards to address the
wide-area communications needs of GridRM and more widely investigate and overcome the problems and
issues associated with developing scalable distributed software.

1.1 Research Objective

The overall objective of this research is to develop a messaging system capable of providing a robust
infrastructure capable of scaling over a wide-area. This includes investigating both non-blocking (event
driven) and blocking messaging. We are keen to provide a robust system to fulfil GridRMs requirements
for wide-area communications and are investigating the GGF’s [2] GMA [3] to see if it provides the features
we need (see Section 2). A key aspect of the project will be studying the means to create what is effectively
a distributed database to provide a look-up service (Virtual Registry) to allow end points to be located and
used. We will be investigating the issues associated with providing debugging and monitoring tools for
jGMA (our messaging system), which is a necessary issue to address for a distributed system. Finally,
when the framework is complete, it will be used in the context of distributed gaming. We intend to create
a set of services based on jGMA that provide generic services for building grid-enabled games.

2 Background and Review

In this section we briefly discuss the various GMA implementations currently available in the spring of
2004. Table 1, shows a matrix of the features and functionality of various GMA implementations, which
we use to highlight some of the the motivating factors which led us to develop jGMA. We split the GMA
implementations into two categories:

• Standalone: systems which can be used by other software to provide GMA capabilities.

• Embedded: systems with GMA like capabilities, but this functionality is part of a larger piece of
software.

The Grid Monitoring Architecture (GMA), is the architecture recommended by Global Grid Forum (GGF)
for transporting resource monitoring information around the grid. The GMA specification sets out the
requirements and constraints of any implementation; it is based on a consumer/producer paradigm with an
integrated system registry. GMA was chosen because it is an emerging grid standard which seems to have
the capabilities we require.

1

2.1 Standalone Implementations

2.1.1 R-GMA (Relational Grid Monitoring Architecture)

R-GMA [4] was developed within the European DataGrid Project [5] as a Grid information and moni-
toring system. R-GMA is being used both for information about the Grid (primarily to find out about
what services are available at any one time) and for application monitoring. A special strength of this
implementation comes from the use of the use of a relational model to search and describe the monitoring
information. R-GMA is based on Java Servlet technology and uses an SQL-like API. R-GMA can be used
in conjunction with C++, C, Python and Perl consumers and/or producers, as well as (obviously) with Java.

2.1.2 pyGMA (Python GMA)

pyGMA [6] from LBNL [7] is an implementation of the GMA using Python. The developers have used the
object-orientated nature of Python to provide a simple inheritance-based GMA-like API. While the features
of pyGMA are not comprehensive, it is easy to install and use. pyGMA is supplied with a simple registry,
which is designed for testing but is not meant to be deployed. Some sample producers and consumers are
provided as a starting point for developing more comprehensive services.

R-GMA pyGMA jGMA MDS3

Languages Supported Java, C, C++, Python and
Perl

Python Java C and Java

Implementation
Language

Java Python Java C and Java

Installation Binary – RPMs for Red-
Hat, Source – Python and
RedHat like Linux

Uses a Python installe Binary - one Java .jar file,
Source - ANT + Apache
Tomcat

GPT package manage-
ment (included)

Dependencies Ant, Java 1.4, Bouncy
Castle, EDG Java Secu-
rity, Jakarta Commons,
Logging, Jakarta-Axis,
Jas, JxUtil, Log4j,
MySQL Client/Server,
MySQL Java Driver,
Netlogger, Prevayler,
Python2, Regexp, Swig,
Tomcat 4, Xerces C and
Java

Python 2, Python SOAP
(ZSI), Python-xml, Fp-
const

Ant, Apache Tomcat,
Java 1.4

Java 1.3 or better, JAAS
library, Ant 1.5, Junit,
YACC (or Bison), Globus
Tookit 3

Transport HTTP (HTTP) SOAP LAN sockets, WAN
HTTP

(HTTP) SOAP

I/O Type Streaming and Blocking Passive and Active Blocking and Non-
blocking

Query based

Type Standalone Standalone Standalone Currently Integrated

Registry RDBMS using MySQL Simple Simple/Xindice Collection of Grid Ser-
vices

Types of producers CanonicalProducer,
DataBaseProducer,
LatestProducer, Re-
silientStreamProducer

User-based User-based User-based

API Size 213 calls (Java API) 46 calls 17 calls Many calls

Security EDG-security for authen-
tication, SSL for transport

None None GSS (SSL and Certs)

Where used In-house EDG testbed DMF GridRM GT3 (many)

Table 1: A comparison of GMA implementations

2

2.2 Embedded GMA Implementations

The Metadata Discovery Service (MDS) [8] that is part of Globus Toolkit version 3 [9] is based on the
emerging Open Grid Services Architecture (OGSA) [10]. MDS provides a broad framework within GT3,
which can be used to collect, index and expose data about the state of grid resources and services. MDS3 is
tailored to work with the OGSA-based Grid Services, it is, itself a distributed Grid Service. While MDS3 is
an influential component within GT3, it is not suitable in its current state to use with GridRM as it requires
the installation of the full GT3 toolkit.

The Network Weather Service (NWS) [11] allows the collection of resource monitoring data from a variety
of sources, which can then be used to forecast future trends. NWS purports to have an architecture based
on GMA, and components that exhibit GMA-like functionality. However, even though this may be the
case, the GMA parts of NWS are integrated and it would be difficult to break these out of the release.

Autopilot [12] from the University of Illinois Pablo Research Group [13] is a library that can be called
from an application to allow monitoring and remote control. Autopilot sensors and actuators (akin to the
GMA producers/consumers) report back to a directory service called the Autopilot Manager, which allows
clients to discover each other. Autopilot can be used to create standalone GMA enabled components in
C++, but it requires and builds on functionality provided by the Globus Toolkit 2.

2.3 Summary

Currently the embedded versions of GMA do not easily lend themselves to being used as standalone GMA
implementation; consequently they cannot be used easily in their existing form with GridRM. This leaves
three alternatives, pyGMA, Autopilot and R-GMA that could be used.

Calling Python (pyGMA) from Java, which is a requirement of GridRM, is not straightforward. While the
Jython project [14] allows the use of Java from within Python, there is no simple mechanism for invoking
Python from within Java without creating a customised and potentially complex JNI bridge.

R-GMA does provide a Java API, and initially it was thought that R-GMA would be a suitable implemen-
tation for GridRM. However, further investigation found that R-GMA was less than ideal for our purposes;
the drawbacks are discussed in [15].

3 The Prototype Architecture

3.1 Introduction

The first steps in our design were to layout a set of general criteria that we considered to be necessary
and/or desirable for the system being developed. The set of criteria includes:

• Compliant to the GMA specification,

• Small well defined API,

• Minimal number of other installation dependencies,

• Simple to install and configure,

3

• Uses Java technologies, and fulfil GridRM’s needs,

• Support both non-blocking and blocking events,

• Scale from LAN to WAN proportions.

• Fast, and have a minimal impact on its hosts,

• Scalable across thousands of sites with millions of producers / consumers.

• Choice of registry service, from a simple one, such as text-based files, to an XML-based one, for
example Xindice [16], or something else, such as a relational database or Globus MDS,

• Able to work through firewalls,

• Capable of taking advantage of TLS [17] and/or the GSI [18].

These criteria were based on our experiences whilst reviewing and investigating the other GMA implemen-
tations, the needs of GridRM, and some overarching principals. Additionally, we decided to write jGMA
in pure Java which allows us to take advantage of a range of Java features and related technologies, as well
as providing portability via bytecode that should execute on any compliant JVM.

3.2 The jGMA architecture

3.2.1 jGMA components

In order to ensure that jGMA was easy to install, dependencies were limited to a standard JVM and Apache
Tomcat [19], which provides a servlet container and a gateway that uses HTTP for inter-gateway com-
munications. This dependency did not compromise our design criteria since GridRM requires Tomcat.
Moreover, most application developers are familiar with Tomcat as it is widely used today.

jGMA consists of four components:

• A virtual registry to allow producers and consumers to discover each other,

• A Producer/Consumer servlet (PC servlet) is used for remote communicating events,

• A Consumer,

• A Producer.

Communication between components uses a shared code base, which provides wide (WAN) and local
(LAN) components. jGMA has two modes of event passing. The first mode is local, where communications
are within one administration domain, i.e. behind a firewall. The second mode is global, when traversing
one or more administrative domains, e.g., via one or more firewall(s). For wide-area communications
HTTP is used. The gateway PC servlet provides wide-area connectivity for machines which do not have
direct access to the Internet.

Figure 1 shows the jGMA components being used together to provide a wide-area message-passing frame-
work. In this figure there are two sites connected over the Internet. The consumer and producer are com-
municating via the PC servlets, which are handling the WAN communication on their behalf. Although,
the registry is sharing a Tomcat container at one of the sites, this could, however, be hosted elsewhere. If
the producer and consumer were at the same site they would communicate directly using sockets and the
PC servlets would not be involved.

4

Tomcat

Consumer

Search/
Registration

Tomcat

Producer

jGMA
Registry

Producer/
Consumer

Servlet

Producer/
Consumer

Servlet

Search/
Registration

Producer/Consumer
Message Path

Administrative
Boundary

Registration/
Publish

Figure 1: The jGMA Architecture

3.3 The revised jGMA implementation

After completing the first version of jGMA, it became apparent there were some problems with the soft-
ware. The benchmarking process highlighted an implementation problem as it stressed the system beyond
the simple tests used during the implementation stages. In addition, some engineering decisions were made
about naming and addressing within jGMA, which proved to have redundant features. The changes made
to address these problems are outlined in this subsection.

3.3.1 The Non-Blocking API

jGMA follows the event-driven (non-blocking) programming paradigm since it is not known when a mes-
sage will be generated. In jGMA the program only executes background house keeping tasks, such as
cache flushing, until a producer or consumer generates an event. In initial versions of jGMA an attempt
was made to provide a combined non-blocking and traditional blocking API, this created complex soft-
ware, which was difficult to debug. The API was altered to use an optional blocking wrapper layer around
a stand-alone non-blocking API, illustrated in Figure 2.

5

1: Initial Implementation

jGMA Client API

Producer/Consumer

Non-Blocking Messenging

Blocking Messenging

HTTP
Comms

Socket
Comms

jGMA Client API

Producer/Consumer

Non-Blocking Messenging

Blocking Messenging
Client API

HTTP
Comms

Socket
Comms

2: Revised API

Figure 2: The Revised jGMA API

3.3.2 Revised naming

The initial addressing and naming scheme was based on implementation decisions rather than design,
as the API matured parts of the old naming scheme became redundant so a new one was designed and
implemented.

A client (consumer or producer) requires some basic information to send a message to another end point.
When communicating over a LAN a hostname (either an IP address or a name which will resolve to one)
and a socket port number could be used. Because there may be more than one jGMA client running on a
single machine each client must have a unique port. An alternative would be to run a proxy server on a
well-known port that would differentiate between destinations on behalf of the client.

jGMA does not make the assumption that each client can be directly reached from the Internet. The PC
servlet can act as a gateway, which can accept messages from the Internet and then pass them onto a client
within the LAN. Similarly jGMA does not assume that all clients have direct access to the Internet so the
PC servlet can also accept messages from clients and forward them over the Internet. Clients can contact
the PC servlet on a known port and have the hostname hardwired. It would be possible to discover the PC
servlet using multicasting, but this manual configuration keeps the code simple. This means that there are
two separate sets of addressing issues, which allow LAN and WAN communications.

A new two-tier addressing scheme was adopted [15]: a LAN address is used for socket communications
and a WAN address used for inter-servlet communications using HTTP(S). To explain, by way of example,
if a consumer queries the registry for a list of producers the PC servlet will translate the WAN addresses of
any local producers into LAN addresses. This has the effect of hiding information about a LAN, such as
IP addresses, only the URL to the PC servlet is exposed.

3.3.3 Client and Servlet Liveliness

Should a consumer, producer or PC servlet not un-register themselves due to some failure, a stale regis-
tration will be left in the registry. It is desirable for these stale records to be cleaned up automatically by
jGMA.

A two-tier solution is proposed. Firstly the PC servlet will monitor and test the communications between
itself and any consumers and producers registered with it, actively detecting problems with the clients and

6

then send a signal to the registry if a fault is detected. Secondly the registry will issue each PC servlet with
a lease; if the lease expires the registry will clean out any records, which are associated with the PC servlet.

A ping-pong event is periodically sent to each registered client from the PC servlet using the standard
jGMA infrastructure. If a reply is not received within a set time the servlet un-registers the client. This
tests the liveliness of the jGMA infrastructure between the client and servlet as well as the liveliness of the
actual client.

3.4 Summary

The jGMA library has been revised since the first implementation, after tests highlighted problems with
the design. By moving the blocking API into a separate layer the software was simplified, which has made
the implementation more robust. The jGMA naming now uses a standard URL format and the two-tier
approach to addresses minimises the amount of local information, which is published in the registry, and
this improves security.

The jGMA API is relatively small; currently there are only 17 methods in the API. Building on the current
basic API and utilising other Java features, such as threads, can achieve the higher-level producer/consumer
functionality. For example, it is possible to do simultaneous blocking I/O calls by creating two consumers
instead of one, or a more complicated client may create both a consumer and a producer.

4 Research Outline

The key areas, which have been researched while producing the core of jGMA are:

• Naming and addressing issues in distributed systems,

• Writing efficient high performance Java.

The core of the jGMA framework is functional, solving the remaining implementation issues will either
improve stability or add extra functionality to make the system easier to use. The focus of the research is
now the registry component, which needs to be investigated thoroughly.

5 Research Timetable (Future Research Directions)

The topics briefly discussed in this section will be investigated during the remainder of this PhD project.

5.1 Soft-state leasing

As described in the design and implementation Section 3.3.3, there is a need to detect when a PC servlet
is no longer working, as any producers or consumers using that servlet will no longer be contactable. The
proposed method to overcome this is to use a form of leasing, similar in concept to that used in Jini [20],
between the PC servlet and the Registry (over the wide-area). The requirements for the leasing mechanism

7

will change when the design of the virtual registry is further studied. The development of the leasing
system will be left until the implementation issues of the registry are better understood.

5.2 jGMA monitoring

Figure 3: The Happy jGMA Web Page

The PC and registry servlets already provide a limited interface for debugging jGMA. This was inspired
(see Figure 3) by the Happy AXIS page. While this helps to check that jGMA is installed correctly, tools
are needed to allow jGMA to be monitored while it is running. Currently the developer must watch and
interpret one log file for each PC servlet to understand what is happening within jGMA; obviously as
the number of PC servlets increases, understanding the log files becomes harder. jGMA Monitoring and
Debugging tools will be further investigated during the project.

5.3 The Virtual Registry (VR)

jGMA requires a robust distributed registry. We discuss the two main areas that will be studied to under-
stand the underlying design issues in the following sections. The jGMA system was designed to run with
minimal configuration needs and tries to be as flexible as possible in terms of functionality; the VR should
follow this design objective, which means its design should add little complexity to the overall installation
or configuration of jGMA.

VR requirements:

• Be scalable,

• Store sufficient information to be GMA compliant,

• Be secure, and prevent unauthorised access to the data,

• Require a minimum amount of configuration.

• Have no single point of failure,

• Be robust and tolerant of poor network access,

• Be optimised to return search results as quickly as possible,

• Have persistent storage for the registry back-end.

8

To make jGMA as easy to install and use as possible the software should function as a standalone system.
This is especially useful where there is no permanent Internet connection. One way to achieve this would
be to include part of the registry (possibly all of it) with the PC servlet with the standard jGMA software
distribution.

PC Servlet

Registry

Producer

Consumer

PC Servlet

Registry

Producer

Consumer

Application

Servlet

Local (Socket)

WAN (HTTP)

LAN (Socket)

Computer

Tomcat

Virtual Registry

Figure 4: The revised jGMA architecture, here each PC servlet has its own registry component

5.3.1 The challenges for the proposed architecture

There are two main issues to investigate before the VR can be designed and implemented. Since a cen-
tralised registry is not scalable, more than one registry will be required, these registry components will need
a way to discover each other before they can communicate. The topology of the registry communication
will need to be optimised to efficiently use the VR.

Boot Strapping

In the initial implementation of jGMA, a single registry was used to store registration information. That
is each PC servlet had the address of the registry hardwired into it. Without this hardwiring, it needs to
discover the remote registry, which is a well known boot strapping issue. Other systems have addressed
the problem in different ways; common approaches are manually hardwiring remote addresses or using an
address caching service. This area will be investigated over the coming months.

The registry communication topology

The second issue when designing the registry infrastructure is to select an optimum topology for jGMA
registries to enable efficient query routing. A query must be processed by a VR in an efficient way. In
the initial implementation of jGMA, every PC servlet was connected to the one centralised registry. This
meant that there was no partitioning of the registration information and a single query of the registry
would search every registered producer and consumer. With a distributed VR queries must reach all of the
registries necessary to perform the search or some consumers and producers will not be found.

9

Although caching search information will affect the behaviour of the system, currently we focus on com-
munication between components of the VR. We aim to minimize the number of hops a query must travel
to search the entire registry in order to reduce the time it takes to complete a search (minimise latency).
Another requirement of the topology is that it must be self-healing, by this we mean that should one or
more of the registries fail; it should have a minimal affect on the overall performance of the VR. Possible
topologies for jGMA communications are discussed more thoroughly in the First Year Report [15].

5.4 Security

The information jGMA transports may be of a sensitive nature. There is a need to control access to it
and stop it from being intercepted and read, especially when it traverses the Internet. Some jGMA design
decisions already help the security of the system, for instance the two-tier addressing prevents information
about the layout of the LAN from leaking into the WAN layer of jGMA; this is described in Section 3.
Currently HTTP is used for the WAN communication of jGMA, moving to the industry standard HTTPS
[17] would prevent the messages from being read or altered on route.

Access control is required to restrict which producers and consumers can communicate with each other.
There are various grid standards for access control and security one of which is Grid Security Infrastructure
(GSI) [18], which was created as part of the Globus project. GSI seems a likely candidate for deployment
in jGMA because of its widespread acceptance by grid administrators. This will be further investigated.

5.5 The Blocking API

As described in the First Year Report [15], the initial implementation of jGMA had a combined blocking
and non-blocking API, later the blocking functionality was removed to create a simpler overall system.
It was proposed that a blocking API be provided as a new layer between the client and the jGMA non-
blocking API. The new blocking API will be implemented after more important work, such as the VR, is
completed.

5.6 Integration into GridRM

When jGMA used a combined blocking and non-blocking API it was tested with GridRM across several
remote sites. After the jGMA API was changed, GridRM could have been altered to use the new API;
however, because of the way GridRM was programmed it is easier to integrate it again after the updated
blocking layer has been completed.

5.7 A Grid Gaming Framework

Online distributed gaming has become increasingly popular with the widespread uptake of broadband
Internet access. Games publishers have each tried to provide an infrastructure to support their online games.
There is an opportunity to develop a standard set of services, based on a completed jGMA implementation,
to support these games.

A potential set of services that online games may require includes:

10

• Searching: It is common to have large numbers of servers all running separate games. The user
client requires a service to index these games and allow searches based on user-defined parameters
such as the current map being played.

• Monitoring servers: Detecting problems with game servers such as large numbers of players can
allow the system to load balance or fail over. There needs to be some infrastructure to do this
reporting.

• Single sign-on. Many games track individual players to combat piracy. Providing a unique identity
for each player makes global high score tables and other statistical tracking possible.

• Security: Authentication and authorisation have become serious problems in recent years. The anti
piracy mechanisms such as CD keys have been simple for malicious users to circumnavigate. This
creates problems for legitimate users who are barred from the game network once their CD key has
been copied.

After completion of the jGMA framework we intend to investigate the issues required to provid an infras-
tructure for distributed online gaming using jGMA as a communications layer.

6 Formal Training

6.1 Research Training

• Conference papers reviewed and discussed:

– Cluster 2003, http://www.cs.hku.hk/cluster2003/
– Grid 2003, http://www.gridcomputing.org/grid2003/
– KGGI WI Workshop, http://www.comp.hkbu.edu.hk/ william/KGGI03/
– AIMS 2004, http://w5.cs.uni-sb.de/ baus/aims04/
– DAPSYS 2004, http://www.lpds.sztaki.hu/dapsys/
– ASTC 2004, http://www.astc.org/conference/
– GCC 2004, http://grid.hust.edu.cn/gcc2004/
– CCGrid 2004, http://www-fp.mcs.anl.gov/ccgrid2004/
– Grid 2004, http://www.gridbus.org/grid2004/
– ADIS 2004
– Cluster 2004, http://grail.sdsc.edu/cluster2004/
– ISPA 2004, http://www.comp.polyu.edu.hk/ISPA04/

• A general literature survey and review of related research material.

• Took part in the e-Science OGSA Testbed project and its quarterly meetings
http://dsg.port.ac.uk/projects/ogsa-testbed/. Helped develop the project web site which received a
bronze award at the 2004 UK e-Science All Hands Meeting.

• Deployed multiple versions of the Globus toolkit, and other grid-based software.

• Regular discussions with members of the DSG on research being undertaken.

11

6.2 Publications / Talks / Networking

Papers

• jGMA: A lightweight implementation of the Grid Monitoring Architecture published in the proceed-
ings of the UK e-Science Programme All Hands Meeting 2004 for the Grid Performability Modelling
and Measurement mini-workshop, Sept 01-03 2004, http://dsg.port.ac.uk/ mjeg/jGMA/jgma ahm2004.pdf

• jGMA: A lightweight implementation of the Grid Monitoring Architecture, technical report Septem-
ber 2004, http://dsg.port.ac.uk/ mjeg/jGMA/jgma report2004.pdf

• jGMA: A lightweight implementation of the Grid Monitoring Architecture, published in the pro-
ceedings of the UKUUG LISA/Winter Conference, February 2004,
http://dsg.port.ac.uk/ mjeg/jGMA/jgma ukuug2004.pdf

Events/Meetings Attended

• Attended UK e-Science Programme All Hands Meeting 2004, http://www.allhands.org.uk/

• Attended UKUUG Winter conference, http://www.ukuug.org/events/winter2004/

• Attended OGSA Testbed meetings

Talks/Presentations

• jGMA at UK e-Science Programme All Hands Meeting 2004,
http://www.nesc.ac.uk/events/ahm2004/presentations/71.ppt

• Invited talk on Grid Middleware at UKEA JET,
http://dsg.port.ac.uk/ mjeg/jGMA/jgma jet2004.ppt

• jGMA presented at UKUUG Winter conference,
http://dsg.port.ac.uk/ mjeg/jGMA/jgma ukuug2004.ppt

• Various DSG seminar talks

Mailing lists

• Globus discuss

• R-GMA datagrid project

7 Conclusion

In this report we have described and then discussed jGMA, a reference GMA implementation written
in Java. We were motivated to produce jGMA by the lack of a viable alternative to use with our grid
monitoring system GridRM, and the ample evidence that such low-level middleware was generally needed
for a range of other Grid services and applications.

jGMA, whilst being functional, is at an early stage of development, there are a number of outstanding
implementation issues to solve (described in Section 3) and a great deal of further study is required before
the Virtual Registry can be implemented. Although jGMA is still evolving it has been made available [21]
as a binary release to developers interested in investigating and further enhancing its capabilities.

12

References

[1] GridRM, http://gridrm.org/

[2] Global Grid Forum, http://www.ggf.org

[3] GMA, http://www-didc.lbl.gov/GGF-PERF/GMA-WG/

[4] R-GMA, http://www.r-gma.org/

[5] Data Grid, http://www.eu-datagrid.org/

[6] pyGMA, http://www-didc.lbl.gov/pyGMA/

[7] LBNL, http://www-didc.lbl.gov/

[8] Globus MDS, http://www.globus.org/mds/

[9] Globus, http://www.globus.org/

[10] Open Grid Services Architecture, http://www.globus.org/ogsa/

[11] Network Weather Service, http://nws.npaci.edu/NWS/

[12] AutoPilot, http://www-pablo.cs.uiuc.edu/Project/Autopilot/AutopilotOverview.htm

[13] University of Illinois Pablo Research Group, http://www-pablo.cs.ui uc.edu/

[14] Jython, http://www.jython.org/

[15] jGMA: First Year Technical Report, http://dsg.port.ac.uk/ mjeg/jGMA/jgma report 10-2004.pdf

[16] Xindice, http://xml.apache.org/xindice/

[17] HTTP Over TLS, http://www.faqs.org/rfcs/rfc2818.html

[18] Grid Security Infrastructure (GSI) , http://www-unix.globus.org/toolkit/docs/3.2/gsi/index.html

[19] Apache Tomcat, http://jakarta.apache.org/tomcat/

[20] Jini, http://www.jini.org/

[21] Download jGMA, http://dsg.port.ac.uk/projects/jGMA/software/in dex.php

13

	1 Statement of Aims
	1.1 Research Objective

	2 Background and Review
	2.1 Standalone Implementations
	2.1.1 R-GMA (Relational Grid Monitoring Architecture)
	2.1.2 pyGMA (Python GMA)

	2.2 Embedded GMA Implementations
	2.3 Summary

	3 The Prototype Architecture
	3.1 Introduction
	3.2 The jGMA architecture
	3.2.1 jGMA components

	3.3 The revised jGMA implementation
	3.3.1 The Non-Blocking API
	3.3.2 Revised naming
	3.3.3 Client and Servlet Liveliness

	3.4 Summary

	4 Research Outline
	5 Research Timetable (Future Research Directions)
	5.1 Soft-state leasing
	5.2 jGMA monitoring
	5.3 The Virtual Registry (VR)
	5.3.1 The challenges for the proposed architecture

	5.4 Security
	5.5 The Blocking API
	5.6 Integration into GridRM
	5.7 A Grid Gaming Framework

	6 Formal Training
	6.1 Research Training
	6.2 Publications / Talks / Networking

	7 Conclusion
	References

