
A Preliminary Performance Evaluation of
jGMA With the NaradaBrokering Framework

Distributed Systems Group, University of Portsmouth
Mark Baker, Matthew Grove, Rahim Lakhoo

[mark.baker@computer.org, {matthew.grove, Rahim.lakhoo}@port.ac.uk]

Abstract

jGMA is an extendable Java-based wide-area messaging framework designed to be a reference imple-
mentation of the GGF’s Grid Monitoring Architecture. In this paper we describe jGMA’s architecture
and then compare its end-to-end performance against that of the NaradaBrokering framework, which
is being developed by the Community Grids Lab at Indiana University. We explain our benchmarking
methodology and then present the analysis of the results from these initial tests. We conclude by making
some observations about the performance of jGMA and NaradaBrokering. Finally we outline our future
work with jGMA to both improve its performance and enhance its functionality.

1 Introduction

Emerging Grid applications need to be provided with a range of services that fulfil the needs of their users.
These services in turn rely on underlying libraries, tools,and other utilities. One important service, needed
by all wide-area distributed systems, including the Grid, is mechanisms for monitoring both hardware
resources and software services. These monitoring mechanisms have several roles including, gathering data
(for example from instrumented applications and hardware monitors), publishing it, as well as discovering
and distributing this information.

The resource monitoring framework, known as GridRM [1], requires a means of discovering and transfer-
ring data between its end-points. Existing messaging systems such as R-GMA [2] and pyGMA [3] did not
meet the requirements of GridRM; this led to the developmentof a general purpose wide-area messaging
system called jGMA, which conforms to the GGF’s Grid Monitoring Architecture [4]. While GridRM
motivated the initial implementation of jGMA, it has since been developed to be a flexible and extensible
messaging framework.

In this paper we describe jGMA’s architecture and then compare its end-to-end performance against that
of the NaradaBrokering framework [5], which is being developed by the Community Grids Lab at Indiana
University. In Section 2 we introduce the jGMA architecture. Section 3 is used to justify the suitability
of NaradaBrokering as a system with which to compare jGMA; also we describe the benchmarks used to
measure end-to-end performance. In Section 4 we explain ourbenchmark methodology, and present the
results in Section 5. Finally we conclude the paper and describe our future work in Section 6.

2 jGMA

jGMA is a Java-based wide-area messaging framework designed to be a reference implementation of the
GGF’s Grid Monitoring Architecture; which is based on a publish and subscribe paradigm. jGMA consists
of three core entities (see Figure 1):

1. Mediators that allow Producers and Consumers to discovereach other and establish remote commu-
nications,

2. Consumers,

3. Producers.

In jGMA, Producers or Consumers can publish their existencein a directory service (registry). In turn,
Producers and Consumers can use the registry to locate parties, which will act as a source or destination

1



for the data they are interested in. Currently jGMA uses TCP Sockets for LAN communications and HTTP
over the WAN. The Mediator allows wide-area connectivity for nodes that do not have direct access to the
Internet; it acts effectively as a gateway into a localised jGMA installation.

Registry


Consumer


Registry


Core


Mediator


Producer


Core


IRCD


DNS


DNS


DNS


WAN (HTTP)


LAN (Socket)


WAN (IRC)


Consumer
 Producer


Figure 1: The jGMA Architecture.

The Virtual Registry (VR) provides Mediators with a distributed mechanism for locating other jGMA
resources and routing registry queries between Mediators.The VR component provides discovery, naming,
and querying services for jGMA clients. Two pluggable layers are used to make the VR extendable.
The first layer allows the use of different local data stores,jGMA currently supports relational databases
(via JDBC) or internal Java-based data structures. The second layer supports different communication
protocols, for example TCP, HTTP, or an application specificprotocol, to be used between components in
the VR. The current implementation of the second layer supports the use of Internet Relay Chat (IRC) to
provide service discovery and remote query routing [6]. Thepluggable architecture of the VR simplifies
the process of exploring how best to leverage existing technologies to create a scalable and robust VR.

3 Preliminary Benchmarking

The aim of these preliminary benchmarks is to establish the latency and bandwidth of jGMA compared
to another popular system. After our initial IRC based implementation of the registry service is com-
plete its performance and functionality will be measured and compared to other similar systems, such as
R-GMA and Globus MDS [7]. Future tests will also examine the scalability of Producer and Consumer
communications by investigating group communication. Thepopular ping-pong test was selected to mea-
sure the latency and bandwidth of sending varying message sizes with different Producers and Consumers
configurations.

3.1 Selecting Software For Comparison

In order to make a good comparison we wanted to select a popular existing framework, which closely
matches the feature set of jGMA. It must be written in Java, support byte messages using TCP/IP Sockets
for local-area communication and provide a service to act asa router for messages over the wide-area using
HTTP.

We chose NaradaBrokering, a widely used system, which is also utilised in projects such as the UK e-
Science Programme [8], GlobalMMCS [9] and Anabas [10]. NaradaBrokering currently has the features
that match most closely with jGMA, so its comparison is more appropriate than other technologies such

2



as R-GMA, pyGMA, MDS and MAGGIES [11]. In the next section we introduce the NaradaBrokering
framework.

3.2 The NaradaBrokering Project

The NaradaBrokering framework is a distributed messaging infrastructure, developed by the Community
Grids Lab at Indiana University. Although originally designed to provide software multi-casting for real-
time collaboration it now aims to provide a unified messagingenvironment that incorporates the capability
to support Grid and Web Services, Peer-to-Peer and video conferencing, within a publish/subscribe archi-
tecture [12].

NaradaBrokering is Sun JMS compliant (version 1.02.b) [13][14], this messaging standard allows applica-
tion components to exchange unified messages in an asynchronous system. The JMS specification is used
to develop Message Orientated Middleware (MOM) and defines how messages are to be communicated
via queues or topics. NaradaBrokering also provides a variety of transport protocols including HTTP, TCP,
NIO/TCP, UDP, and SSL.

Consumer


Topic


Broker


Producer


WAN (HTTP)


LAN (Socket)


Topic
 Topic


Broker


Figure 2: A Simplified View of the NaradaBrokering Architecture.

NaradaBrokering is an asynchronous messaging infrastructure with a publish and subscribe -based archi-
tecture. Networks of collaborating brokers are arranged ina cluster topology, with a hierarchy of clusters,
super-clusters, and super-super-clusters [15]. Each broker is assigned a logical address within the network,
which corresponds to its location and contains a Broker NodeMap (BNM) for the calculation of routes,
based on broker hops. The NaradaBrokering transport framework provides the capability for each link
between brokers to implement a different underlying protocol [16]. The security framework incorporates
an encryption key management structure, supporting a variety of algorithms, for topics, publishers, and
subscribers [17]. A built-in performance aggregation service can monitor links originating from a broker
and typically displays values for the average delay, latency, jitter, throughput, and loss rates [18]. Audio-
video conferencing is accomplished with the aid of the Real-Time Protocol (RTP) [19] and the Java Media
Framework [20] [21]. Support for JXTA Peer-to-Peer [22] end-points communicating over a NaradaBro-
kering broker network is propagated though a proxy [23]. NaradaBrokering also incorporates services for
the compression/decompression and fragmentation/coalescing of payloads/files; it also has the ability to
bypass firewalls and proxies.

Within NaradaBrokering, topics can be defined as string based, coupled with SQL like queries,tag=value
pairs, integer based, or XML based with XPath queries. Subscriptions are organised in a hierarchical fash-
ion, whereby brokers store client subscriptions, and broker subscriptions are recorded by super-cluster
nodes, also known as cluster controllers. Subscribers implement a MessageListener, which is invoked by
the broker upon receipt of a message, providing asynchronous delivery of messages. The body of a message
may match one of five types, Stream, Map, Text, Object, or Bytes message. Events in NaradaBrokering are
defined as time stamped messages, the broker responds to these events and routes them to the appropriate
endpoint [24].

3



4 Benchmarking

4.1 Ping-Pong

A traditional ping-pong test was implemented in Java. This test measures the round trip time to send and
receive messages of varying sizes, and can be used to assess end-to-end latency and bandwidth.

The benchmarks are written so that the time to bootstrap the test does not interfere with the measurements
they gather. For NaradaBrokering we used a string based topic rather than numeric one in order to more
closely match jGMA, which uses strings to identify end-points.

4.2 Topologies

Two different arrangements of Producers, Consumers and Mediators/Brokers are used to measure the la-
tency and bandwidth of the two different types of communication.

• Test 1 measures the performance of TCP-based communications over Fast Ethernet (LAN),

• Test 2 measures the performance of simulated wide-area communications using a combination of
TCP (LAN) and HTTP (WAN).

For each test the layout of NaradaBrokering and jGMA components where matched as closely as possi-
ble in order to provide comparable results (see Figure 3). The main difference is that NaradaBrokering
does not allow for direct communication between end-points; data (or messages) must flow from clients
via a broker(s), which handles the routing of messages. Conversely, clients in jGMA by-pass the Media-
tor and undertake direct communications over the host or LAN. In the first test where jGMA end-points
could communicate directly the placement of the NaradaBrokering components were selected for optimal
performance.

C
 P


C
 P


P


C
 P


Node 0
 Node 1
 Node 2
 Node 3


C


T
e
s
t 

1



T
e
s
t 

2



N
a
ra

d
a



jG
M

A



N
a
ra

d
a



jG
M

A



N
a
ra

d
a



jG
M

A



N
a
ra

d
a



jG
M

A



Mediator/


Broker


Producer/


Consumer


HTTP


Socket


Figure 3: The Two Test Configurations.

4



5 System Configuration

The tests were run using four nodes from a cluster. Each node had dual 2.8GHz Xeon processors with 2
GB RAM and a 80GB EIDE disk running Debian Linux 3.1 with the 2.4.30 kernel. The machines were
connected by Fast Ethernet.

For both jGMA and NaradaBrokering, the Sun JVM (Version 1.5.0-b64) was invoked with no command
line options; the maximum heap size was not altered from the default (for Linux the default is 64 Mbytes).
The Java timer used in the tests had microsecond resolution.

5.1 Java Baseline Performance

A Java Sockets implementation of a traditional ping-pong was used to measure the baseline communication
performance. By comparing the measurements taken when timing jGMA and NaradaBrokering to the
baseline performance it was possible to analyse the overhead of sending and receiving messages with each
system.

6 Discussion of Results

6.1 Test 1 - LAN (Sockets)

In Test 1 the Consumer is run on one host and the Producer on another, they communicate over Fast
Ethernet via Sockets. The jGMA Consumer and Producer communicate directly using Sockets only using
the Mediator to bootstrap the test. The NaradaBrokering Consumer and Producer also use Sockets to send
the messages, but NaradaBrokering routes messages via the broker.

6.2 Test 2 - WAN (HTTP)

In Test 2 four hosts are used to simulate a WAN. Both jGMA and NaradaBrokering components are ar-
ranged the same way, with the Consumer and Producer communicating with two separate Brokers/Mediators
using Sockets and the Brokers/Mediators communicating using HTTP.

6.3 Results and Observations

The results from both tests and the baseline performance areplotted in Figures 4 and 5. Figure 4 shows the
average latency with increasing message size and Figure 5 shows the bandwidth, plotted against increasing
message size.

6.3.1 Latency Results And Analysis

LAN Latency:

Baseline Java has less than 200µs latency for messages<512 Kbytes. Between 512 Kbytes and 4 Mbytes
latency for the Java baseline test increases in step with message size. For messages<128 Kbytes, both
jGMA and NaradaBrokering show an additional fixed latency ofaround 1200µs over the baseline per-
formance of Java. The difference between NaradaBrokering and jGMA LAN latency is negligible until 4
Kbytes, when for messages up 4 Mbytes the difference betweenjGMA and NaradaBrokering increases in
step with message size.

Simulated WAN Latency:

For messages<16 Kbytes, there is a fixed 5000µs difference in latency between jGMA and NaradaBro-
kering using HTTP. As the message size increases beyond 16 Kbytes the difference between the latency
of the two systems decreases to 3000µs at 128 Kbytes. From 128 Kbytes until 4Mbytes the differencein
latency increases in step with message size.

5



100

1000

10000

100000

1000000

4M1M256K64K16K4K1K256641641

T
im

e 
(M

ic
ro

se
co

nd
s)

 L
og

 S
ca

le

Message Length (Bytes) Log Scale

Baseline LAN (Socket)
jGMA LAN (Socket)
jGMA WAN (HTTP)

Narada WAN (HTTP)
Narada LAN (Socket)

Figure 4: Latency versus Message Length.

6.3.2 Bandwidth Results And Analysis

LAN Bandwidth:

Baseline Java bandwidth utilisation peaks at 11.5 Mbytes/s. The bandwidth achieved by NaraBrokering and
jGMA, for messages<8 Kbytes, is approximately 55% of that of baseline Java. After this point jGMA’s
bandwidth continues to increase and plateaus at 512 Kbytes with a 10.9 Mbytes/s (95.5% of the baseline
bandwidth); where NaradaBrokering peaks at 128 Kbytes witha bandwidth of 7.3 Mbytes/s (65.3% of
baseline), thereafter the bandwidth achieved by NaradaBrokering decreases as message size increases,
falling to 56

WAN Bandwidth:

The maximum bandwidth for jGMA using HTTP communications for messages< 1 Kbyte was 2.7% of the
maximum achievable (0.07 Mbytes/s); NaradaBrokering achieved 0.6% (0.01 Mbytes/s). The maximum
bandwidth achieved by jGMA using HTTP was 27% of the maximum (3.1 Mbytes/s); this was achieved at
the 2 Mbyte point and was sustained for the 4 Mbyte message point. After peaking at 26% of the achievable
bandwidth (2.8 Mbytes/s) using 128 Kbyte messages, the bandwidth utilisation for NaradaBrokering falls
by 3% at the 4 Mbyte message point.

6.4 Discussion Of Results

The small difference (approximately 200µs) between the LAN results of jGMA and NaradaBrokering
for small messages is caused by the cost of jGMA opening a new Socket for every message, whereas
NaradaBrokering reuses a single Socket for each message. For LAN the 1000µs latency over that of the
baseline Java is due to the internal latency of jGMA and NaradaBrokering caused by data marshalling and
the cost of storing and retrieving messages from the send andreceive buffers.

It is thought that the smaller fraction of the total bandwidth achieved when sending small messages is
due to both frameworks using a single send thread to send messages. This means that when the available
bandwidth is high, such as is the case with Fast Ethernet, andthe message size is small, the maximum
number of messages that can be sent per second is bound by the speed and capability of the host’s CPU.

6



0.0009

0.0039

0.0156

0.0625

0.25

1

2.5

5

10

4M1M256K64K16K4K1K256641641

B
an

dw
id

th
 (

M
by

te
s/

s)
 L

og
 S

ca
le

Message Length (Bytes) Log Scale

Baseline LAN (Socket)
jGMA LAN (Socket)
jGMA WAN (HTTP)

Narada WAN (HTTP)
Narada LAN (Socket)

Figure 5: Bandwidth versus Message Length.

The difference between the LAN and WAN results is explained by the effect of undertaking additional,
internal messaging between clients and the mediators/brokers, and the overheads of processing the HTTP
encapsulated message. The overhead is greatest for messages of<1 Kbyte.

7 Summary And Conclusions

In this paper we have briefly described jGMA and NaradaBrokering, and also presented the results from
an initial set of benchmarks establishing point-to-point performance comparing the two systems. These
benchmarks have provided some insight into the expected performance and capabilities of jGMA.

The end-to-end performance tests show, that on a LAN for messages less than 2 Kbytes, jGMA and
NaradaBrokering have comparable performance. jGMA achieves 95% of the maximum bandwidth util-
isation for larger messages. Reusing Sockets rather than creating a new one for each message can further
reduce the latency of jGMA

When using HTTP with messages<128 Kbytes, there is a constant latency difference between jGMA
and NaradaBrokering of between 3000-5000µs. For larger messages this difference increases. The poor
HTTP performance relative to that of Sockets provides scopefor further improvement of both the jGMA
and NaradaBrokering.

7.1 Future Work

The results of these simple benchmarks have shown a number ofdeficiencies in the internal programming
of jGMA; we intend to improve the performance of the implementation both the Socket and HTTP pro-
gramming. We will then move on to system test the scalabilityjGMA components by varying the number
of Producers and Consumers, and determining how many messages per second a client can handle. Vary-
ing the number of Producers sending messages to a Consumer will help assess the scalability of jGMA by
simulating a Consumer under heavy load.

The current focus of jGMA research is the distributed registry service. We are currently developing a
pluggable registry component (the Virtual Registry), which will allow us to explore how best to leverage

7



existing P2P technologies to create a scalable, robust registry service to provide mechanisms that allow
jGMA components to locate and query each, over the wide-area. The Virtual Registry will be benchmarked
and compared to other service discovery systems such as R-GMA and Globus MDS.

References

[1] GridRM, http://gridrm.org/

[2] R-GMA, http://www.r-gma.org/

[3] pyGMA, http://www-didc.lbl.gov/pyGMA/

[4] GMA, http://www.ggf.org/documents/GFD/GFD-I.7.pdf

[5] Community Grids Lab, Indiana University, NaradaBrokering, http://www.naradabrokering.org

[6] M.A. Baker and M. Grove, A Scalable Registry Service For jGMA, Work-in-Progress Novel Grid
Technolgies, CCGrid 2005, March 2005.

[7] Globus MDS, http://www-unix.globus.org/toolkit/mds/

[8] National e-Science Centre, http://www.nesc.ac.uk/

[9] GlobalMMCS, http://www.globalmmcs.org/

[10] Anabas, Inc. eLearning and collaboration, http://www.anabas.com/netscape/index.html

[11] MAGGIS, http://www.cs.uiowa.edu/ apadmana/MAGGIS/

[12] Fox. G, Pallickara. S, and Parastatidis, S. Towards Flexible Messaging for SOAP Based Services,
Proceedings of the IEEE/ACM Supercomputing Conference 2004, Pittsburgh, PA.

[13] Sun Microsystems, Java, Java Messaging Service (JMS) Specification 1.0.2b,
http://java.sun.com/products/jms/

[14] Fox. G, and Pallickara. S. JMS Compliance in the Narada Event Brokering System, Proceedings of
the 2002 International Conference on Internet Computing (IC-02), Volume 2 pp 391-397.

[15] Pallickara. S, and Fox. G., On the Matching Of Events in Distributed Brokering Systems, Proceedings
of IEEE ITCC Conference on Information Technology, April 2004. Volume II pp 68-76.

[16] Pallickara. S, Fox. G, Gunduz. G. Y, Liu. H, Uyar. A, and Varank. M., A Transport Framework for Dis-
tributed Brokering Systems, Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, (PDPTA’03),Volume II pp 772-778.

[17] Pallickara. S, Pierce. M, Yan. Y, and Huang. Y., A Security Framework for Distributed Brokering
Systems. Technical Report, http://www.naradabrokering.org/papers/NB-SecurityFramework.pdf

[18] Gunduz. G, Pallickara. S, and Fox. G., A Portal Based Approach to Viewing Aggregated Network
Performance Data in Distributed Brokering Systems, Proceedings of the 2003 International Confer-
ence on Internet Computing, Volume II pp 495-501.

[19] RTP: A Transport Protocol for Real-Time Applications (IETF RFC 1889),
http://www.ietf.org/rfc/rfc1889.txt

[20] Sun Microsystems, Java, Java Media Framework (JMF), http://java.sun.com/products/java-
media/jmf/

[21] Uyar. A, Pallickara. S, and Fox. G., Towards an Architecture for Audio Video Conferencing in Dis-
tributed Brokering Systems, Proceedings of the 2003 International Conference on Communications
in Computing pp 17-23.

[22] JXTA, http://www.jxta.org/

[23] Fox. G, Pallickara. S, and Rao. X.. Scaleable Event Infrastructure for Peer to Peer Grids, Proceedings
of the ACM Java Grande ISCOPE Conference 2002.pp 66-75. Seattle, WA.

[24] Pallickara. S, and Fox. G., A Scheme for Reliable Delivery of Events in Distributed Middleware
Systems, Proceedings of the IEEE International Conferenceon Autonomic Computing, New York,
NY. pp 328-329.

8


	1 Introduction
	2 jGMA
	3 Preliminary Benchmarking
	3.1 Selecting Software For Comparison
	3.2 The NaradaBrokering Project

	4 Benchmarking
	4.1 Ping-Pong
	4.2 Topologies

	5 System Configuration
	5.1 Java Baseline Performance

	6 Discussion of Results
	6.1 Test 1 - LAN (Sockets)
	6.2 Test 2 - WAN (HTTP)
	6.3 Results and Observations
	6.3.1 Latency Results And Analysis
	6.3.2 Bandwidth Results And Analysis

	6.4 Discussion Of Results

	7 Summary And Conclusions
	7.1 Future Work

	References

