
A Scalable Registry Service for jGMA

Mark Baker and Matthew Grove

Distributed Systems Group, University of Portsmouth, UK
[mark.baker@computer.org, matthew.grove@port.ac.uk]

Abstract

jGMA is a pure Java reference implementation of the GGF's Grid Monitoring Architecture, which
identifies the core characteristics required for a scalable grid-based monitoring infrastructure. In the
GMA, producers or consumers can publish their existence in a directory service (registry). This
paper focuses on the development of jGMA’s Virtual Registry service which resides within the
Mediator component. The Virtual Registry will provide consumers and producers with a scalable
and robust mechanism to publish and discover each other over the wide area.

1. Introduction

jGMA [1] is a pure Java reference
implementation of the GGF's GMA [2], which
represents the characteristics required for a
scalable grid-based monitoring infrastructure. In
this model, producers or consumers that accept
connections publish their existence in a
directory service (registry). Producers and
consumers can then both use the registry to
locate parties, which will act as a source or
destination for the data they are interested in.

In this paper we briefly introduce the jGMA
architecture and outline the requirements of the
Virtual Registry (VR) component. We then
introduce an initial implementation of the VR
service using Internet Relay Chat (IRC). Finally
we conclude the paper and outline our future
work.

Our motivation for developing jGMA, is
described elsewhere [3], but can be summarised
by saying some existing systems were
embedded into larger software packages, such
as the MDS in the Globus Toolkit, and Network
Weather Service, and were deemed difficult to
breakdown into a standalone version needed for
our purpose. R-GMA and pyGMA, two
standalone GMA implementations were
considered, but both were less than ideal for our
purpose; the drawbacks are discussed
elsewhere.

2. The jGMA Architecture

Our reference implementation of GMA has
number of idealised features, including
complying with the GMA specification, capable
of scaling from LAN to WAN proportions, and
across thousands of sites with millions of

producers/consumers, supporting both non-
blocking and blocking events, capable of taking
advantage security components such as TLS
and/or the GSI. In addition, we wanted the
actual implementation to have a small and well-
defined API, a minimal number of installation
dependencies, be easy to install and configure,
have a minimal impact on its hosts, good
performance and be capable of working through
firewalls.

jGMA consists of three entities:

• Mediators that permit producers and
consumers to discover each other and
allow remote communications,

• Consumers,
• Producers.

In jGMA, producers or consumers publish their
existence in a directory service (registry). In
turn, producers and consumers can use the
registry to locate other parties, which act as a
source or destination for the data they are
interested in. Currently jGMA uses TCP
Sockets for LAN communications and HTTP
over the WAN. The Mediator allows wide-area
connectivity for nodes that do not have direct
access to the Internet; it acts effectively as a
gateway into a localised jGMA installation.
Figure 1 shows the registry components within
the jGMA architecture.

3. The jGMA Virtual Registry

A simple volatile data store was initially
implemented in jGMA; this only stores
information about clients that are connected
directly to the Mediator. The new Virtual
Registry (VR) component within the Mediator
needs to provide discovery, naming, and
querying services for jGMA clients. VRs within
Mediators require a mechanism to discover an

Figure 1: The jGMA architecture - highlighting the virtual registry components

efficiently communicate in order to form a
virtualised registry.

Virtual Registry requirements:

• Be scalable,
• Store sufficient information to be

GMA compliant,
• Be secure, and prevent unauthorised

access to the data,
• Need minimal configuration,
• Ideally have no single point of failure,
• Be robust and tolerant of network

failure,
• Efficient query routing between

individual registries.

The VR architecture provides two pluggable
layers; one allows the use of different
implementations of local data storage, for
example using text files, a relational database
such as MySQL or an XML database such as
Xindice. The second layer allows different
protocols to be used for communications
between components in the VR; we are
exploring the use of Peer-to-Peer (P2P)
technologies to provide the distributed database.

3.1 Virtual Registry Design

The VR provides three core services: discovery,
querying, and caching. It should be noted that
not all P2P systems provide all three of these
services, so some generic jGMA services are
needed to provide the missing functionality.

Implementing these services as separate
modules makes it possible to try different
implementations of a service without having to
redesign the whole system. A feature of this
approach is interoperability with other systems,
should a standard protocol be adopted for
monitoring information on the Grid, it would be
possible to connect jGMA without redesign or
significant refactoring.

1. Discovery: This is the process by which the
registry component within a Mediator locates
other registries to form the VR. If this
mechanism relies on centralised services, the
greater the likelihood of a failure in the
discovery process. For example, one solution is
to contact a well-known server to get a list of
existing VRs; obviously this is not a scalable or
fault tolerant approach. We require a more
dynamic discovery process, which does not rely
on so called hardwired addresses to work. We
are currently assessing the suitability of existing
P2P communications protocols for providing
Mediator discovery and inter-VR
communications (Section 3.2).

2. Distributed Queries: Once the VR has been
joined, queries can be despatched and routed
through the VR infrastructure. The VR network
topology must be self-healing, by this we mean
that should one or more of the registries fail; it
should have a minimal affect on the overall VR.
The VR network topology should aim to reduce
the number of hops required to traverse the

network in order to minimise the time required
to propagate a query. The design of the VR
infrastructure will allow us to experiment with
different network topologies and P2P protocols,
such as Gnutella [4].

3. Caching: Using a cached registry query
reduces the number of queries sent over VR. A
cache hit will allow the VR to respond
immediately to the query rather than having to
wait for a remote query to complete. Caching
also provides some fault tolerance during
transient faults with either the WAN
connectivity or remote registries. Issues of data
consistency will have to be dealt with at this
level too.

3.2 VR IRC Service

The IRC VR service Figure 2 is an attempt at
meeting the criteria of the jGMA VR by
building a system which uses the mature
Internet Relay Chat protocol. IRC was chosen
as it provides a set of services closely matching
the needs of jGMA’s VR. IRC networks have
servers connected via a graph topology, which
attempt to efficiently route messages and
provide fault tolerance; some IRC networks
manage thousands of users and can provide
fault tolerant boot-strapping via DNS.

Using combinations of existing IRC features
can provide a range of security levels:

• Leveraging functionality built into the
IRC protocol for example locking
channels, and private messages,

• Using the features of the IRC daemons
such as encrypted routing for IRC
messages,

• Running your own IRC daemons rather
than using a public network.

Each Mediator has an "IRC Bot" which
connects to a chosen IRC network. The steps
the Bot goes through to join and query other
jGMA Mediators are:

1. The Bot joins a channel and announces
itself to other Bots,

2. The Bot publishes search queries to the
IRC channel,

3. Other Bots receive the queries and pass
them onto the IRC registry backend,

4. The Bots reply to the queries via a
private message over IRC.

All messages are routed via the IRC network.

Currently IRC channels are used to partition the
VR, we need to explore methods of reducing the
impact of a `flood query' on the network such as
using IRC channels to create a virtual topology
(an overlay network).

4. Summary and Conclusions

In this paper we have described the
requirements for a distributed virtual registry for
jGMA. We have outlined the design for a
pluggable registry framework for jGMA, which
will allow us to explore how best to leverage
existing P2P technologies to create a scalable,
robust Virtual Registry. We have introduced an
embryonic implementation of the VR using the
IRC network. We currently support SQL as a
query language and LDIF [5] as a response
mark up. The VR has a layer of abstraction,
which translates queries and responses into an
intermediate format internally; this allows us to
add support for different query languages and
response mark ups, such as XPATH and RDF,
to permit interoperability with other GMA
implementations in the future.

In order to demonstrate the capabilities of the
jGMA framework we intend to develop a
library for online distributed gaming, which has
become increasingly popular with the
widespread uptake of broadband. Games
publishers have each tried to provide an
infrastructure to support their online games. We
believe there is an opportunity to develop
standard services, based on a jGMA, to support
these games.

An early binary version of jGMA [6] is
currently available for developers interested in
investigating and further enhancing its
capabilities. jGMA has been extensively
benchmarked throughout its development, the
latest results are presented in [7].

Figure 2: The jGMA IRC Virtual Registry Service

References

[1] jGMA,

http://dsg.port.ac.uk/projects/jGMA/
[2] GMA,

http://www.ggf.org/documents/GFD/GFD-
I.7.pdf

[3] jGMA: A lightweight implementation of
the Grid Monitoring Architecture, M.A.
Baker and Matthew Grove, UK e-Science
All Hands Meeting, September 01-03 2004

[4] Gnutella, http://www.gnutella.com/
[5] RFC 2849 - The LDAP Data Interchange

Format (LDIF) - Technical Specification,
Gordon Good,
http://www.faqs.org/rfcs/rfc2849.html, June
2000

[6] jGMA Download,
http://dsg.port.ac.uk/projects/jGMA/softwar
e/

[7] M.A. Baker, M. Grove and R. Lakhoo, A
Preliminary Performance Evaluation of
jGMA With the NaradaBrokering
Framework, submitted to Grid 2005 - 6th
IEEE/ACM International Workshop on
Grid Computing,
http://dsg.port.ac.uk/~mjeg/jGMA/jgma_pr
eprint_sc-grid2005.pdf, June 2005

