
jGMA: A lightweight implementation of the Grid Monitoring Architecture

Mark Baker and Matthew Grove

Distributed Systems Group, University of Portsmouth, UK
[mark.baker@computer.org, matthew.grove@port.ac.uk]

Abstract

Wide-area distributed systems require scalable mechanisms that can be used to gather and distribute
system information to a variety of endpoints. In this paper we report on jGMA, a Java-based
implementation of the GGFs Grid Monitoring Architecture (GMA), that we have specifically
designed to be compliant, standard-based and fulfil the needs of an in-house grid monitoring
system. In the first half of paper we introduce GMA, outline current implementations, and provide
the reasons that motivated us to design and then implement jGMA. In second part of the paper we
discuss the implementation, it scalability and general performance, and finally conclude the paper
and outline future work on jGMA.

1. Introduction

Registry

Producer Consumer

Re
gi

st
er

/P
ub

lis
h Register/Sear ch

Events

Figure 1: The Architectural View of GMA

The Distributed Systems Group at the
University of Portsmouth has for the last few
years, been developing a resource monitoring
system for the Grid that can gather data from
endpoints, filter and fuse this data for
subsequent use by a variety of clients. The
monitoring system, known as GridRM [1],
needs to distribute information over the wide
area between, so called, GridRM gateways. The
software for distributing this information around
GridRM needs to be lightweight, modular, fast,
and efficient. There are obviously numerous
ways to do this, we have, however, decided to
use the Grid Monitoring Architecture (GMA)
[2], which is the mechanism recommended by
Global Grid Forum (GGF) [3]. The GMA
specification sets out the requirements and
constraints of any implementation. The GMA is
based on a simple consumer/producer
architecture with an integrated system registry,
see Figure 1.

The GMA is an abstraction of the characteristics
required for a scalable monitoring infrastructure
over the Grid. The GMA supports a
publish/subscribe and query/response model. In
this model, producers or consumers that accept
connections publish their existence in a
directory service (registry). Producers and
consumers can then both use the directory
service to locate parties, which will act as a
source or destination for the data they are
interested in. It should be noted that monitoring
data is sent from a producer to a consumer;
however either the producer or consumer may
initiate a subscription or query.

The GGF argue that the requirements of GMA
cannot be met by existing event-based services,
as the data requirements for monitoring
information are different. The GGF list several
desirable features for GMA:
• Low latency,
• Capable of a high data rate,
• Minimal system impact,
• Secure,
• Scalable.

2. Similar Work
In this section we briefly discuss the various
GMA implementations currently available in
the spring of 2004.

2.1 Standalone Implementations

2.1.1 R-GMA (Relational Grid Monitoring
Architecture)
R-GMA [4] was developed within the European
DataGrid Project [5] as a Grid information and
monitoring system. R-GMA is being used both
for information about the Grid (primarily to find
out about what services are available at any one

time) and for application monitoring. A special
strength of this implementation comes from the
use of the use of a relational model to search
and describe the monitoring information. R-
GMA is based on Java Servlet technology and
uses an SQL-like API. R-GMA can be used in
conjunction with C++, C, Python and Perl
consumers and/or producers, as well as
obviously with Java.

R-GMA is the most ambitious and significant
variant of the current GMA implementations
that was initiated in September 2000. Since then
the software has continuously evolved.
Currently R-GMA is being used for an "in-
house" testbed [6].

2.1.2 pyGMA (Python GMA)

pyGMA [7] from LBNL [8] is an
implementation of the GMA using Python. The
developers have used the object-orientated
nature of Python to provide a simple
inheritance-based GMA-like API. While the
features of pyGMA are not comprehensive, it is
easy to install and use. pyGMA is supplied with
a simple registry, which is designed for testing
but is not meant to be deployed. Some sample
producers and consumers are provided as a
starting point for developing more
comprehensive services.

2.2 Other GMA Implementations
There are several other systems, which either
exhibit GMA like behaviour or have a GMA
implementation embedded within them.

The Metadata Discovery Service (MDS) [9],
which is part of Globus Toolkit is based on the
emerging Open Grid Services Architecture
(OGSA). MDS provides a broad framework
within GT3, which can be used to collect, index
and expose data about the state of grid resources
and services. MDS3 is tailored to work with the
OGSA-based Grid Services, it is, itself a
distributed Grid Service. While MDS3 is an
influential component within GT3, it is not
suitable in its current state to use with GridRM
as it requires the installation of GT3, which is
rather heavyweight for our purposes.

The Network Weather Service (NWS) [10]
allows the collection of resource monitoring
data from a variety of sources, which can then
be used to forecast future trends. NWS purports
to have an architecture based on GMA, and
components that exhibit GMA-like
functionality. However, even though this may

be the case, the GMA parts of NWS appear
tightly integrated and it would be difficult to
break these out of the release.

Autopilot [11] from the University of Illinois
Pablo Research Group [12] is a library that can
be called from an application to allow
monitoring and remote control. Autopilot
sensors and actuators (akin to the GMA
producers/consumers) report back to a directory
service called the AutopilotManager, which
allows clients to discover each other. Autopilot
can be used to create standalone GMA enabled
components in C++, but it requires and builds
on functionality provided by the Globus Toolkit
(version 2).

A DSG technical report on jGMA [13] contains
a matrix comparing the features and
functionally of various versions of GMA. As it
can be seen R-GMA has great potential, but
there are a number of drawbacks, not least of
these are the large number of system
dependencies required for installation and use.
In addition, there are some architectural
features, which may limit its scalability and
flexibility. Alternatively pyGMA appeared
promising, but there are some issues with using
it with a Java application, and there are some
considerations with regards it having a very
simple registry. Finally, MDS3 had the potential
to fulfil our requirements for GridRM.
Unfortunately the current implementation is
embedded in the Globus release, which meant
that it would potentially require some
reengineering to meet our needs.

2.3 Summary
Currently the embedded versions of GMA do
not easily lend themselves to standalone GMA
purposes; consequently they cannot be used in
their existing form with GridRM. This leaves
three alternative GMA implementations
pyGMA, Autopilot and R-GMA.

Calling Python (pyGMA) from Java, which is a
requirement of GridRM, is not straightforward.
While the Jython project [14] allows the use of
Java from within Python, there is no simple
mechanism for invoking Python from within
Java without creating a customised and
potentially complex JNI bridge.

R-GMA does provide a native Java API, and
initially it was thought that R-GMA would be a
suitable implementation for GridRM. However,
there are a number of drawbacks with using R-
GMA. It can be seen form the technical report

[13] that there are a significant number of
dependencies to build R-GMA from source.
Also, R-GMA is aimed at one specific version
and distribution of Linux (Redhat 7.3). The
developers have used a build process, which
relies on files and libraries being in non-
standard places and the use of a non-portable
mechanism for compilation (shell scripts).
There is a binary release of R-GMA, however,
this is via RPMs, which again limits the
platforms on which the system can be
automatically installed. Another problem that
was encountered is the rapid development and
changing nature of R-GMA. This can create
problems for a developer trying to work with
such a large code base, because it is constantly
evolving to keep up with the latest trends and
needs of the large number of developers and
potential users.

A requirement of GridRM is that it is easy to
install and configure across multiple platforms.
A complicated set of prerequisites would make
its deployment a lengthy and potentially
complex task. GridRM requires a GMA
implementation that has a lightweight Java API,
which is functional, easy to use, and extensible.

3. jGMA Design

The global layer of GridRM requires a wide-
area event-based system for passing control and
monitoring information between the local
GridRM gateways. Ideally, from our point of
view, we would have preferred to integrate a
third-party GMA implementation into GridRM;
this is for obvious reasons, such as reduced
development time and minimal support
requirements. However, as stated in Section 2,
none of the existing GMA implementations met
our requirements, and consequently we have
developed our own version.

3.1 jGMA Design Criteria
The first steps in our design were to layout a set
of general criteria that we felt were necessary
and/or desirable. These criteria were based on
our experiences whilst investigating the other
GMA implementations, the needs of GridRM,
and some overarching principals:
• Compliant to the GMA specification,
• Lightweight, with a small and simple API,
• Minimal number of other installation

dependencies,
• Simple to install and configure,
• Uses Java technologies, and fulfil

GridRM’s needs,

• Supports both blocking and non-blocking-
based events,

• Designed to work locally over a LAN or
over a wide area such as the Internet,

• Fast and have a minimal impact on its
hosts,

• Choice of registry service, from a
lightweight one, such as text-based files, to
an XML-based one like Xindice [15], or
something else, such as a database or MDS,

• Able to work through firewalls,
• Capable of taking advantage of TLS or the

GSI,
• Easy to use.

To provide the functionality and features that
we desire it was decided to write jGMA in pure
Java. This allows us to take advantage of a
range of Java-based technologies, as well as
providing portability via bytecode that should
execute on any compliant Java Virtual Machine.

3.1 jGMA Development and
Implementation Issues
jGMA consists of four entities:
• A registry to allow producers and

consumers discover each other,
• A Producer/Consumer servlet to allow

remote communications,
• Consumers,
• Producers.

jGMA has one dependency, Apache Tomcat
[18], which provides a servlet container and a
gateway that uses HTTP for inter-gateway
communications. It was felt that this
dependency did not compromise our design
criteria, as Tomcat has become familiar to most
Java developers. In addition, GridRM itself
requires Tomcat.

3.2 jGMA Communication
jGMA supports both blocking and non-blocking
I/O; this provides the flexibility and
functionality that will be required in most
circumstances. jGMA has two modes of event
passing; local, where communications are
within one administration domain, i.e. behind a
firewall, and global, when traversing more than
one administrative domain, i.e. via one or more
firewall(s).

Originally Java RMI was used for local
communication, as it was a way to rapidly
prototype the communication system, this was
altered to Java Sockets during the first stage of

optimization as RMI imposed significant
communication overheads. Currently jGMA
uses TCP Sockets and non-blocking
communications are simulated.
Communications over the wide area use HTTP.
Using a gateway Producer/Consumer servlet
also allows wide-area connectivity for
machines, which do not have direct access to
the Internet, which is common with nodes in
standard cluster network topologies.

The main difference between local and wide-
area communications is that inter-domain
messages are sent via the Producer/Consumer
servlets rather than directly between consumers
and producers.

Tomcat

Consumer

Search/
Registration

Tomcat

Producer

Registration

Producer

jGMA
Registry

Producer/
Consumer

Servlet

Producer/
Consumer

Servlet

Search/
Registration

Producer/Consumer
Message Path

Administrat ive
Boundary

Figure 2: Wide-area jGMA Communications

Figure 2 shows an example of wide-area
communications. In this example the registry is
located on the same network as the producers, it
could just as easily be on the consumer side or
on a completely different network. Note that
inter-domain messages between a producer and
consumer are routed via the Producer/Consumer
Servlet, which communicated between each
other via HTTP, thus avoiding firewall issues.

3.2.1 Addressing within jGMA

The pseudo unique name is made up of several
components which jGMA uses to decide how to
route a message, this is most easily explained by
way of an example:

http://dsg.port.ac.uk:8080/jGMA/PC?c0a806
4_localhost:123_producer_foo_1

• Here http://dsg.port.ac.uk:

8080/jGMA/PC is the public URL of the
Producer/Consumer servlet which can be
used to contact the network via the Internet,

• c0a8064 is the IP address of the
Producer/Consumer servlet in hexadecimal,

• localhost: 123 is the hostname and port
which the client is listening on,

• producer indicates the type of client, it will
be either a producer or consumer,

• foo is the preferred name of the client, in a
human readable form,

• The number, 1, in this case is an
incremental number, which ensures this
name is unique to the Producer/Consumer
Servlet.

For the purposes of the development and testing
of jGMA the scheme used for naming is more
than adequate.

3.3 The jGMA Registry
The overall purpose of the registry in GMA is to
match consumers with one or more producers.
This is achieved by producers publishing
information about themselves and then
consumers searching through the registry until
they find the relevant match and thereafter the
two communicating directly with each other.

The information published in the registry
typically includes the unique address, and
potentially the attributes and capabilities of the
producer. In addition, to limit the retention of
stale information, some sort of Time To Live
(TTL) tag should be associated with the
registration.

An implementation of the GMA should be
capable of scaling to global proportions. This
implies that there should multiple registries and
the registry information should be replicated for
fault tolerance purposes.

GridRM uses jGMA to provide a messaging
infrastructure between its gateways. GridRM
gateways hold detailed information about its
producers and what data they can provide. A
GridRM client could search through one or
more gateways for the producers that it is
interested in. However, as the number of
producers and gateways becomes large this
would produce an unacceptable load on the
overall system and also means that a query
could take a significant amount of time. It is
clear that a meta-level registry service is
necessary. Such a service would hold high-level
information about producers and gateways that
could be interrogated first by a client before
doing a low-level and detailed search on
individual gateways.

jGMA registries can provide this meta-level
registry service for GridRM. Ideally, jGMA
registries should be able to “slot” together to
form a virtual registry. Such a registry, from a
client’s point of view, would appear as one
large shared entity. To create the virtual registry
requires that the physical registries are
distributed and the information they hold is
replicated.

jGMA originally used a volatile registry, which
stored the names of producers and consumers in
memory. This registry was designed to provide
the limited functionality required to build and
test the rest of jGMA. The jGMA registry
contains a parser that allows queries based on a
simplified SQL syntax. Maintaining a high-
level of abstraction via the registry API (and
SQL syntax) has made it possible to create a
jGMA registry interface that can plug-in to a
variety of potential repositories, including XML
and relational databases, as well as other
registries such as MDS or R-GMA.

Originally, producers or consumers in jGMA
registered just their address (see section 3.2.1)
in the registry. The new registry API now not
only permits consumers or producers to register,
but it also allows an associated XML document
be uploaded, which describes features and
capabilities of the registered entities. This
additional feature means that the developers
using jGMA can publish as much information
as they wish, and consequently have control
over the granularity of the virtual registry
service.

For the purposes of GridRM, the jGMA registry
service will remain lightweight, we do not
intend to store anything other than the
information required to provide the GMA-like
functionality and use of the extra XML
information will be limited.

The objective of this stage of jGMA has been to
produce an abstract registry API that can
interact with a number of persistent data stores,
include relational and XML databases, or a
simple flat ASCII file. The current jGMA
registry service has been prototyped using the
XML Xindice database [15]. Later we plan to
test Berkeley DB Java Edition [16] and an
ASCII text file as registry components.

The revised jGMA registry addresses the issues
of scalability, though a hierarchy of registries,
and fault tolerance with partial information
replication. In addition, registered entities will

be associated with leases, akin to those used by
Jini [17]. This will ensure that registries
maintain consistent and fresh information.

3.4 The jGMA API
The jGMA API is relatively small; currently
there are only 17 method calls in the API.
Building on the current basic API and utilising
other Java features, such as threads, can achieve
the higher-level producer/consumer
functionality. For example, it is possible to do
simultaneous blocking I/O calls by creating two
consumers instead of one, or a more
complicated client may create both a consumer
and a producer.

4. jGMA Implementation

4.1 Overview
While conceptually the producer, consumer and
Producer/Consumer servlet are different; the
jGMA implementation reuses the same code for
each. This is possible because although they
have different logic for processing jGMA
messages a large part of their functionality is
focused on exchanging messages (events).

Figure 3 shows the internal software structure of
the producer, consumer, and
Producer/Consumer servlet. It attempts to
highlight the importance of the socket send()
and receive() methods. If these methods are
slow or poorly implemented, it will affect the
whole system. Our initial analysis of the
program flow showed that the majority of the
execution time was spent manipulating, copying
and sending the jGMA messages through the
system.

Client
(Producer/
Consumer)

Comms
GMA Message

Queue

Socket Handler

Socket Thread

Socket
Send()

Incoming Messages
via Socket

Servlet

Comms
GMA Message

Queue

Socket Handler

Socket Thread

Socket
send()

Incoming Messages
via Socket

HTTP
PUT()

Incoming Messages
via HTTP

Figure 3: The internal structure of a jGMA
client and Producer/Consumer servlet

4.2 Reducing Communications
Overheads
In order to reduce message latency we needed
an efficient way of passing data between jGMA
components. The normal Java programming
practice of using objects was replaced with
static methods, which manipulated byte arrays.
Our objective here was to reduce the number of
times Java copied the internal data structures
and limit the use of expensive high-level Java
API calls. This alteration halved the number of
internal copies from four to two.

4.3 Wide-Area Communications
When jGMA stored handled messages as Java
objects, wide-area communication were
achieved by encoding the object as a string and
sending it between Producer/Consumer servlets
using HTTP GET; here the data is part of the
URL. As discussed in Section 4.2, the jGMA
message format was altered from objects to
packed binary arrays; there was a need to
change the wide-area communication to
efficiently send this binary data.

4.3.1 HTTP POST

The HTTP protocol [19] allows binary data to
be sent in the body of a HTTP POST request to
allow uploading through HTML forms [20].
Using ‘multipart/form-data’ and
‘multipart/mixed’ it is possible to send more
than one binary message in one request, or mix
ASCI and binary in one request, this
extensibility and flexibility is desirable, since
the GMA specification is not fully defined. For
now, jGMA only sends one message per
request, but it may take advantage of the ability
to send multiple messages in future versions.

1.1 4.4 Summary
jGMA was incrementally adapted and evolved
in light of our experiences. Once the software
was stable (version 0.3.2) it was tested to
measure its performance, this process and the
results are presented in Section 5.

5. Testing

5.1 Introduction

This section reports on the initial testing the
performance and functionality of jGMA over a
local area. The overall aim of this stage was to
optimise the communication overheads, assess

impact, and confirm overall functionally. We
provide an overview of the tests with some key
findings highlighted, a more thorough analysis
can be found in the technical report [13].

5.2 jGMA Benchmarking

A Java implementation of the traditional Ping-
Pong network test was used to measure point-
to-point performance. We were careful to omit
extra overheads, such as internal processing of
GMA messages. By comparing the
measurements taken when timing jGMA, to the
raw performance, it was possible to analyse
performance overheads.

Test 1: Non-blocking I/O – A Ping-Pong
between a single producer and consumer. This
test involved executing both consumer and
producer on the same host, and then with the
producer and consumers on different hosts
connected via Fast Ethernet.

Test 2: Blocking I/O – A Ping-Pong between a
single producer and consumer. These tests were
run both over the network and on the same
machine in the same way as the non-blocking
tests.

Test 3: Scalability Tests – The cluster head
node runs the Producer/Consumer servlets,
Registry servlet, and one consumer. The
producers are distributed over the cluster so that
each node can run up to two. N producers are
started and the consumer instructs them to send
messages to it over Fast Ethernet, the number of
messages the consumer handles per second is
recorded. Non-blocking I/O was used as this
was felt a more realistic simulation than
blocking I/O for large numbers of events.

Test 4: Wide-Area Communications – A wide-
area environment was simulated on the DSG
cluster by running two Producer/Consumer
servlets – one for the consumer and one for the
producer. The test machines communicate via
Fast Ethernet. The test measures the latency and
bandwidth of sending jGMA messages over
HTTP via a Producer/Consumer servlet for a
range of message sizes. For an explanation of
the steps in wide-area communications see
Section 3.2.2 and Figure 2.

5.3 Benchmarking Results Overview

The performance tests (for details see [13])
showed that for blocking communications there

is an extra 8-millisecond overhead compared to
raw sockets for Ethernet messages under <256
Kbytes. This overhead is due to processing a
blocking message, which we are continuing to
investigate. There is the possibility of changing
to an eager-reader paradigm here, but this may
produce an excessive impact on the host. The
overhead currently limits the peak bandwidth,
which is 33% of the raw socket bandwidth. For
non-blocking communication using messages
<256 Kbytes, jGMA produces an overhead of
1.4 milliseconds compared to raw sockets for
Ethernet, and the peak bandwidth is 67% of the
raw socket performance.

It requires between 7 to 9 producers (depending
on the message size) to saturate a jGMA
consumer. When more producers are added, the
number of messages the consumer can handle
does not fall – which indicates that even under a
heavy load (1100 x 32 Kbytes messages per
second) jGMA is stable. When the number of
messages being received by a consumer reaches
its peak, new messages begin to queue up in the
send buffers of the producers, eventually a
producer will consume all available resources
and will not be able to add any new messages to
its send buffer. It is unlikely that GridRM will
generate messages at this rate, but it indicates
the throughput that GridRM can expect jGMA
to be able to handle reliably.

It became evident that some kind of throttling
was needed for the sending mechanisms of
jGMA. Currently a producer can generate as
many messages as the memory allocated to it by
the Java VM can contain. This was desirable
when testing the scalability because it allowed
stress testing of the jGMA implementation.
This, however, does have a side effect, a
consumer can only process a certain number of
messages per second. When multiple producers
are sending at the same time, the consumer will
reach a maximum throughput and messages will
start to accumulate in the send buffers at each
producer.

6. Summary and Conclusion

In this paper we have described and discussed
jGMA, a lightweight GMA implementation
written in Java. We were motivated to produce
jGMA due the lack of a viable alternative to use
with our grid monitoring system.

Several outstanding issues with jGMA are
currently being addressed. These include more
efficient event and queue handling to reduce the

overheads described in section 5.3, and a means
of throttling message generation and delivery.
One solution would be to allow the developer to
set the buffer size used. A more interesting
solution would be to make the sending functions
more intelligent, maybe using a sliding-
window-based protocol [22] or perhaps using
rate feedback [23].

jGMA is fully functional, but is still evolving.
In particular the registry service is currently
being developed. jGMA has been integrated
within GridRM and is being further investigated
via its global testbed. jGMA [21] is currently
available as a binary release to developers
interested in investigating and further enhancing
its capabilities.

6.1 Future Work
This initial benchmarking has shown us that
jGMA is functional with acceptable
performance. Deploying jGMA alongside
GridRM over the wide-area has allowed us to
test the system more fully. There are several
other areas that we are currently exploring,
including:

Figure 4: The Happy jGMA web interface

• An interactive debugging and monitoring
interface. At the moment a simple web
interface for testing the installation of
jGMA (Figure 4). We intend to extend this
interface so that we can dynamically
monitor and track jGMA events and
queues.

• Registries, as described in the paper, we are
moving from a simple volatile registry to a
distributed virtual registry.

• Security, so far security has not been
addressed in jGMA. This is obviously an
important feature for GMA compliance, we
are exploring how best to incorporate the
GSI.

References

[1] GridRM, http: //gridrm.org/

[2] GMA, http://www-didc.lbl.gov/GGF-
PERF/GMA-WG/

[3] Global Grid Forum,
http://www.ggf.org

[4] R-GMA, http: //www.r-gma.org/
[5] DataGrid, http: //www.eu-datagrid.org/
[6] R-GMA testbed,

http://hepunx.rl.ac.uk/edg/wp3/testbed.
html

[7] pyGMA, http: //www-
didc.lbl.gov/pyGMA/

[8] LBNL, http: //www-didc.lbl.gov/
[9] Globus MDS,

http://www.globus.org/mds/
[10] Network Weather Service,

http://nws.npaci.edu/NWS/
[11] AutoPilot, http://www-

pablo.cs.uiuc.edu/Project/Autopilot/Au
topilotOverview.htm

[12] Pablo Research Group, http: //www-
pablo.cs.uiuc.edu/

[13] jGMA: A lightweight implementation
of the Grid Monitoring Architecture,
DSG Technical Report,
http://dsg.port.ac.uk/~mjeg/jGMA/jgm
a_report2004.pdf

[14] Jython, http://www.jython.org/
[15] Xindice, http://xml.apache.org/xindice/
[16] Berkeley DB Java Edition,

http://www.sleepycat.com/products/je.s
html

[17] Jini, http://www.jini.org/
[18] Apache Tomcat,

http://jakarta.apache.org/tomcat/
[19] RFC2616, Hypertext Transfer

Protocol, HTTP/1.1,
http://www.w3.org/Protocols/rfc2616/r
fc2616.html

[20] RFC1867, Form-based File Upload,
HTML,
http://www.ietf.org/rfc/rfc1867.txt

[21] jGMA,
http://dsg.port.ac.uk/projects/jGMA/

[22] Understanding the Performance of
TCP Pacing,
http://netlab.caltech.edu/FAST/referen
ces/ Infocom2000pacing.pdf

[23] RFC3448, TCP Friendly Rate Control,
http://www.ietf.org/rfc/rfc3448.txt

