

An iso-energy-efficient approach to scalable system power-performance optimization.

Leon Song, Matthew Grove, Kirk Cameron SCAPE Lab, Virginia Tech

August 24, 2011

Background

- Since 1992 performance has increased 10,000 fold while performance per watt only improved 300 fold.
- Energy efficiency is now key to HPC system design.
- In order to continue to scale we must address the energy problem.

SCAPE Lab

Focus on power and performance.
 Co-founded the Green500.
 We dismantle your expensive HPC nodes and directly instrument hardware (hopefully without releasing the magic smoke).

Talk Focus

- Motivation for producing a new model.
- Gathering the model input parameters.
- >What can you do with the model.
- General things we have learned from using the model.

Problem

>We do not fully understand the impact of system-level power management on application performance.

>What is the root cause of any performance or power changes?

August 24, 2011

Current Approaches

The majority of the work focuses on power mode predictor and controller design.

Modeling vs Observing

- ➢ We want to be able to predict ahead of time what will happen if we alter anything about how a job is run.
- Such as changing the resources allocated to the job or altering the power management strategy.

Use Cases

- Enable users to explain an observed efficiency.
- Determine the root cause of the inefficiency.
- Help a system designer identify inefficiencies in system or algorithm design.

System Energy Efficiency

- >We can illustrate the effect of scaling problem size on system efficiency with a simple experiment.
- > We apply Cannon's algorithm to varying problem sizes with the CPU in a fixed power mode (frequency) whilst varying the system size.

Scaling Problem Size

The graph shows that for this simple example scaling system size with problem size can increase efficiency.

August 24, 2011

Approach

- Build an analytical model for both power and performance to gain insight into how they interact.
- > The goals for the model:
 - Practical (usable)
 - AccurateUseful

Iso-Energy-Efficiency (I-I-E)

- Quantitatively model the interactive effects of power and performance on clusters.
- >Addresses two key points:
 - Predict total energy consumption.
 - Model how energy efficiency is affected by changing parameters such as CPU frequency.

Methodology

Run the application and gather input parameters.

- Build the Energy model, combining:
 Performance and Power models.
- Find optimal values for system energy efficiency.

August 24, 2011

I-I-E Parameters

- There are 29 inputs in the model, loosely grouped:
 - Machine Dependent, e.g. number of nodes.
 - Time Related, e.g. average time to send a message.
 - Power Related, e.g. average CPU power in idle state.

Case Studies

Our instrumented power aware clusters were used.

Cluster	System size	Processor	Memory	L1 cache	L2 cache	Interconnecti on	frequency
SystemG	325 Mac Pro nodes	two quad-core 2.8 GHz Intel Xeon processor	8GB RAM	32KB	Shared, 6MB	Mellanox 40Gbytes/sec InfiniBand	2.8 and 2.4 GHz
Dori	8 blades	AMD Opteron dual core dual processor	6GB RAM	64KB	Shared, 1MB	1Gbytes/sec Ethernet	1.8, 1.6, 1.4, 1.2, 1.0 GHz

Collecting Parameters

- Perfmon+libpfm4.0: Hardware counters
- PowerPack 3.0: Power
- >MPPTest: MPI
- >LMbench: Memory
- >/proc/stat: IO

PowerScale

- Manually gathering the parameters was very labor intensive and error prone.
- We developed a runtime called PowerScale to automate this part of the work.

August 24, 2011

Measuring Accuracy

- >We ran the NAS parallel benchmark suite on Dori and SystemG.
- ➢We compared the energy consumption as predicted by the model to actual consumption as measured by PowerPack.

Dori NAS Accuracy

Model accuracy >95% in all benchmarks. 8 nodes fixed frequency.

Applying the Model

- Iso-Energy-Efficiency is still very new (introduced in IPDPS 2011).
- >We wanted to put it to practical use.
- Use the model to determine appropriate efficiency values for problem size and power scaling modes on clusters.

Case Studies

- >We have analyzed several benchmarks (see papers).
- We will look at Fourier Transform (FT) and Conjugate Gradient (CG) from the NAS parallel benchmark.
- FT is communication intensive with dominating communication for some execution phases. CG is more computationally intensive.

Predicting for FT

FT's system-wide energy efficiency with p and n as variables

FT's system-wide energy efficiency with p and f as variables

FT Observations

- Problem size scaling under fixed frequency is effective in maintaining overall system energy efficiency.
- CPU frequency scaling does not drastically effect the efficiency.
- Conclusion: Scale number of nodes and problem size simultaneously.

CG Observations

- The energy efficiency declines as more parallelism is added.
- Energy efficiency can be maintained by scaling problem size.
- CPU frequency has more impact than with FT because of the lower communication to computation ratio.
- Conclusion: Scale problem size, nodes and CPU frequency.

Conclusions

- Practical (usable), although it is made easier if you have a tool for automating measuring the parameters.
- >Accurate within 5%.
- Useful for predicting total system energy consumption and allows 'what if' analysis.

Problem Size Scaling

Large range to scale gives flexibility.

Cons:

Does not fit problems with limited input data or limited system resources.

August 24, 2011

Frequency Scaling

Pros:

Potential to save a lot of energy.

Cons:

Limited frequencies can restrict the rate of system energy improvement.

Does not improve system utilization.

Future Work

- Automate the analysis part of the model that happens after running PowerScale.
- Additionally make a simpler version of the model (sacrificing some accuracy) in order to make it easier to apply.

GPU

>We are interested in extending the model to work with heterogeneous architectures such as the increasingly popular GPU. >We do not currently instrument PCI cards as part of PowerPack. How can we get the energy consumption for a single GPU?

Questions

Leon Song <u>s562673@cs.vt.edu</u> <u>http://scape.cs.vt.edu/</u>

August 24, 2011