
How Processor Speedups Can Slow Down I/O
Performance

1Hung-Ching Chang, 1Bo Li, 2Matthew Grove, and 1Kirk W. Cameron

1Department of Computer Science

Virginia Tech

Blacksburg, VA 24061
{hcchang, bxl4074, cameron}@cs.vt.edu

2Rackspace
Blacksburg, VA 24060

mat.grove@rackspace.com

Abstract—Power states in power-scalable systems are
managed to maximize performance and reduce energy waste.
Power-scalable processor capabilities (e.g., Intel Turbo Boost)
embrace a “faster is better” approach to power management.
While these technologies can vastly improve performance and
energy efficiency, there is a growing body of evidence that
“faster is not always better”. For example, in some I/O
intensive benchmarks, we observe up to 47% performance
loss when running codes at faster (higher power) frequencies
versus slower (lower power) frequencies. To the best of our
knowledge, this is the first work to systematically and
accurately pinpoint the root cause of these types of slowdowns.
The lack of such studies is likely due to three challenges we
overcome in this work: 1) high runtime system variance; 2)
bottleneck isolation across user- and system-space boundaries;
and 3) non-determinism in parallel codes. Our analytical
model-driven approach identifies Atomic Batch Transactions
(ABTs) in the Linux kernel as the cause of slowdowns at
higher processor speeds. We propose and evaluate the use of
power-aware ABT's that can increase performance more than
3-fold over the default Linux kernel while maintaining
comparable reliability. Our work motivates the need for more
studies that potentially reconsider the "faster is better" design
paradigm.

Keywords—Performance, energy efficiency, atomic batch
transactions.

I. INTRODUCTION
Energy efficiency is now a driving force in system

design. One consequence is a notable increase in autonomic
power management. For example, nearly all Intel and AMD
processors now feature dynamic voltage and frequency
scaling (DVFS) “governors” that promise to boost thread
and ultimately application performance.

These governors generally boost processor power and
speed in response to utilization and operate on the principal
that higher power and frequency typically results in
improved performance. While memory or I/O issues may
stifle performance gains, the assumption is that higher
power and frequency do no harm aside from perhaps at
times wasting energy.

Figure 1 contradicts the conventional wisdom that
higher power and frequency do no harm to performance.
The figure shows IOzone benchmark performance (KB/sec)

for the same system running at two different (fixed)
processor frequencies (1.6 GHz and 3.3 GHz). Normalizing
to the performance at the lowest available frequency for
this IOzone run (1.6 GHz), the IOzone benchmark, which is
typically used to compare vendor I/O performance across
systems, runs 47% slower at the highest available
frequency (3.3 GHz)1.

Fig. 1. IOzone performance on a Dell T1100 using a Xeon E3-1270 3300
MHz (SandyBridge) quad-core with 8GB of DDR3 RAM and a 250 GB
7200 rpm hard drive. The system runs the CentOS 6.4 Linux distribution
(kernel version 3.4.2).

To the best of our knowledge, no work has attempted to
isolate and model the root causes of the slowdowns that
Figure 1 exemplifies. Nonetheless, other researchers in
several different contexts [1-21] have independently
confirmed these types of slowdowns.

In some cases [1-6, 10-12, 14-21], the slowdowns were
not significant enough to warrant further study. In other
cases, the slowdowns were significant but the authors
proffer unconfirmed theories as to the root cause. The goal
of our work is to explain the root cause of significant
slowdowns we’ve observed in I/O performance.

Challenges. Unfortunately, isolating the cause of such
slowdowns is non-trivial. First, I/O system measurements
are noisy which makes simply identifying slowdowns
problematic. Second, even the simplest multi-threaded I/O
codes are extremely complex with parallel critical paths

1 Astute readers will undoubtedly want more details for these experiments.

Though this is shown as a singular result, this is the average result of
over 50 runs. We discuss variance and other related details in our
experimental results section.

that repeatedly cross user- and kernel space boundaries due
to numerous calls to user and system libraries. Isolating the
critical path requires intimate knowledge of both the
application being studied and the performance path and
nuances of the operating system kernel. Third, thread
arrival times and their use of resources in parallel I/O codes
are inherently non-deterministic. Nonetheless, highly
parallel codes with high variance, complicated critical
paths, and inherent non-determinism are exactly the codes
that exhibit slowdown behavior. Furthermore, experimental
variance, the complexity of critical paths, and non-
determinism are steadily increasing in emergent systems
exacerbating the challenge of isolating slowdowns and their
root causes.

Contributions. Our main contribution is the
identification of resource contention among I/O threads as
the root cause of the observed I/O slowdowns. With the use
of code and kernel instrumentation, exhaustive
experiments, and deep insight to the inner workings of the
Linux I/O subsystem, we overcome the aforementioned
challenges of variance, complexity and non-determinism.
We derive an analytical model to explain the behavior of
two parallel I/O benchmarks that exhibit significant
slowdown when processors speed up. We verify our
findings experimentally and propose an adaptive runtime
system to avoid slowdowns during processor speedups.

II. EXPERIMENTAL APPROACH
We began our work with exhaustive testing for

significant slowdowns across a large number of
applications suggested by the literature [1-6]. Figures 2 and
3 show the average speedup from select IOzone and
Metarates experiments2. IOzone is a file system benchmark
that generates and measures a variety of file operations.
This benchmark is part of the Phoronix Test Suite3 used by
review sites including Tom’s Hardware4. In our tests, we
measured the maximum achievable throughput for read-
write operations on an exhaustive combination of threads
(up to 256), file sizes (up to 16 MB), and record sizes (up
to 16 MB). Metarates is a file system benchmark that
measures the performance of concurrent aggregate
metadata transaction rates in extremely large file systems
[22]. In our tests, we measured the maximum achievable
throughput for read-write operations on exhaustive
combinations of threads (up to 64) and files (up to 256).

Figures 2 and 3 demonstrate the aforementioned
variance challenge. The gray area in each figure shows the
relative standard deviations (RSDs) for the select IOzone
and Metarates experiments. For example, IOzone for a
given number of threads (256), file size (128 KB), and

2 We disable the turbo boost and hyper-threading features so we can

manually isolate performance at each static frequency and isolate
slowdowns.

3 http://www.phoronix-test-suite.com/
4 http://www.tomshardware.com/

record size (32 KB) on the system running at all available
frequencies exhibits RSDs from 11-55%; Metarates for a
given number of threads (4) and files (4) on the system
running at all available frequencies exhibits RSDs from 13-
32%. We overcome these significant variances using
exhaustive testing. We run all of the combinations of
benchmark parameters mentioned across all the available
P-states for each processor. For the data shown herein, the
number of total repeat experiments (>50 in all cases) for a
given data point was selected to achieve 95% statistical
confidence [23]. A full sweep across these parameter sets
takes about one and a half months to complete.

IOzone and Metarate were selected for detailed study
and modelling for several reasons. First the benchmarks
themselves showed acute sensitivity to processor speeds as
observed in Figures 2 and 3. Second, each thread performs
a short sequence of I/O read and write operations. This
reduces the amount of complexity in the critical path for
each thread. This allowed us to account for non-
determinism in parallel thread execution by grouping
threads based upon their arrival order at shared resources.
Third, the benchmarks are used to compare hardware I/O
implementations which means slowdowns could be
exploited to game results that affect user adoption.
Furthermore, these benchmarks represent many types of
common database transactions with high I/O frequency.

In Figures 2 and 3, IOzone for a given number of
threads (256), file size (128 KB), and record size (32 KB)
on the system running at 3.3GHz is 47% slower than
running on the same system at 1.6GHz; Metarates for a
given number of threads (4) and files (4) on the system
running at 3.1GHz is 20% slower than running on the same
system running at 1.6GHz.

Fig. 2. Select results from IOzone benchmark on SandyBridge (HDD).
Findings are comparable on the other systems though not included due to
space limitations. SandyBridge HDD is a Dell T1100 using a Xeon E3-
1270 3.3 GHz quad-core with 8 GB of DDR3 RAM and a 250 GB 7200
rpm hard drive.

Fig. 3. Select results from Metarates benchmark on Nehalem (HDD).
Findings are comparable on the other systems though not included due to
space limitations. Nehalem HDD is a Dell T3500 using a W3550 3.00
GHz () quad-core with 6 GB of DDR3 RAM and a 250 GB 7200 rpm hard
drive.

III. MODELING IOZONE AND METARATES
Following a detailed analysis of the IOzone benchmark

and a deep dive on the Linux I/O subsystem particulars,
Figure 4 shows our conceptual view of the critical path of a
single IOzone thread.

We observe that at a high-level Figure 4 shows where
time is spent in a given thread. Every thread in IOzone
(from left to right in the figure) begins by opening a file,
then waiting, then writing to a file. Following the write, an
fsync operation occurs causing the critical path to enter
kernel-space by invoking a kernel function called a journal
commit (JC). When the kernel finishes its commit, control
returns to the thread which closes the file. To ease
description of what happens when many such threads run in
parallel, we use an analytical model. While the model is
used to isolate the cause of slowdowns, users may jump to
the end of this section for a high-level explanation of our
derived findings.

A. Analytical Model of IOzone Performance
We now present an analytical model of atomic batch

transaction for IOzone performance. The model uses the
parameters measured from the aforementioned Linux
kernel instrumentation (see Tables 2 and 3).

1) User-space I/O Threads

Suppose a parallel I/O workload launches ! threads,
where each thread starts at the same time and
simultaneously makes POSIX I/O system calls to its own
file. Let ! represent a set of I/O threads. The total number
of threads is ! = !. Each element in ! represents one
individual thread, from !!,!!,⋯ , !"!!!. !! indicates the i-
th thread in !, using i as an index to select a thread from !.

Each thread receives a task with size S and requires a
series of operations (ops) to complete. The ops that a thread
can execute are the open, write, close, and fsync POSIX
I/O calls. Each thread requires more than one op for its
task. Each op is a blocking system call, so each thread
needs to complete its current op before the thread can
progress to its next op.

For each op, !!" is used to indicate the event where the
op begins, and !!" is used to refer to the event where the op
ends. When !! (the i-th thread in !) begins its op, !!! !!"

is used to indicate the time stamp of this event, and !!! !!"
is used to refer to the time stamp of when !! finishes its op.
Let T!" !! represent the time elapsed for the i-th thread to
complete its op. Then T!" !! can be calculated by
subtracting the time stamp when the i-th thread ends its op
from the time stamp when the i-th thread begins its op.

!!!!!!!!!!!!!!!!!!!!!!!!!T!" !! = !!! !!" − !!!! !!" . (1)

2) The Journal Process

When a parallel I/O workload requires user-space I/O
threads to execute fsync ops before their completion of the

TABLE 2. Operation(op)-dependent notations.

op Definition
User-space ops

open Open a file via the POSIX system call open()

write Write data to a file via the POSIX system call write()

close Close a file via the POSIX system call close()

fsync Synchronize data and metadata from memory to
storage device via the POSIX system call fsync()

Kernel-space ops

DFLUSH Flush in-memory data to storage device

JCFLUSH Flush in-memory metadata to storage device via
journal

JC Journal commit

TABLE 1. Thread/journal-dependent notations.

Notations Definition

! Set of threads, ! = {!! + !! +⋯+ !!}
!! The i-th thread in !

S Size of the workload

N Total number of threads, |!| = !

!!" The event when op begins

!!" The event when op finishes

!!!!!!"! The timestamp when the i-th thread begins its op

!!!!!!"! The timestamp when the i-th thread finishes its op

T!"(!!) Time elapsed for the i-th thread to complete its op

! Set of journal processes,!!! = {!! + !! +⋯+ !!}
O Total number of journal processes, |!| = !

!! The p-th journal process in !

!!!!!!"! The timestamp when the p-th journal process begins
its op

!!!!!!"! The timestamp when the p-th journal process
finishes its op

T!"!!!!! Time elapsed for the p-th journal process to complete
its op

Fig. 4. The interaction between a thread and a journal process for the
IOzone benchmark.

tasks, a set of journal processes will be activated in the
Linux kernel. There is only one active journal process
running at a time in the Linux kernel. The job for a journal
process is to issue a journal commit operation, which
synchronizes the in-memory metadata (We assume ordered
mode journaling; the default configuration) in the virtual
file system of the Linux kernel with the permanent (non-
volatile storage).

Let ! represent the journal processes that are activated
by the user-space I/O threads via their fsync ops. The total
number of the journal processes is ! = !. Each element
in ! represents one individual journal process, from
!!, !!,⋯ , !"!!!. Let !! indicate the p-th journal process in
!, using p as an index to specify a journal process from !.
For each op, !!" is used to indicate the event that the op
begins, and !!" is used to refer to the event that the op ends.
When the p-th journal process !! issues its op, !!! !!" is
used to indicate the time stamp of this event, and !!! !!"
is used to refer to the time stamp of when !! finishes its op.
For now, we assume that the kernel journal process issues
only one operation: the journal commit (JC) op, but we
will remove this constraint shortly (see Figure 6).

Let T!" !! represent the elapsed time for the p-th
journal process to complete its op. Then T!" !! can be
obtained by subtracting the time stamp when the p-th
journal process ends its op from the time stamp when the p-
th journal process begins its op.

!!!!!!!!!!!!!!!!!!!!T!" !! = !!! !!" − !!!! !!" . (2)

The kernel-space journal processes may influence the
user-space I/O threads during their write ops and fsync ops.
The IOzone benchmark threads test the file system’s read-
write performance by using POSIX system calls (e.g.,
open(), write(), fsync(), and close() functions). Specifically,
IOzone launches threads, where each thread in parallel
issues POSIX system calls and completes its task by
creating a file, writing data to the file, flushing
data/metadata to the storage device, and then closing the
file. The time spent writing the data to a file by each thread
is measured as the result, and the benchmark performance
metric is calculated by accumulating the results from all
threads. From (1) we have:

IOzone!Throughput!"!#!$%_!"#$%

= !
!!"#$% !!

!
!!! . (3)

From the IOzone benchmark metric, we observe that
variance in reported results occurs in the measured time for
the write operation (T!"#$% !!). The aforementioned high
variances come from this operation and, as mentioned, we
use a brute force exhaustive approach to obtain statistical
confidence of 95% in all of our experiments.

IOzone and Journal Commits. Let !! be the first
thread that triggers the journal process!!! via the fsync op.

!! issues four ops—open, write, fsync, and close—to
complete its task. Figure 4 shows a group of events
belonging to !! and !!, with the time increasing from left
to right.!!! starts by issuing an open op to create an empty
file and waits for all threads to finish their open ops before
it progresses to its write op. This is the synchronization
event in the IOzone throughput test that ensures all threads
start their write ops at the same time. Next !! issues a
write op with a workload of size S and progresses to its
fsync op. When !! is on its fsync op, it first waits for the
kernel to flush out its in-memory file data, and then it waits
for the kernel journal process !!’s JC op to synchronize the
in-memory file metadata with the storage device. After
L!completes its JC op, K! progresses to its close op and
finishes its task.

During the phase that !! is on its JC op, the file
system’s metadata is locked and is synchronized with the
storage device. Any write op that attempts to update the
metadata is blocked and has to wait until the metadata is
released by !!, which is the reason that these blocked write
ops take a significantly long time to complete. These
blocked write ops are forced to wait for the duration of
time spent in data transmission between the memory and
the storage device, while the unblocked write ops involve
only the memory accesses. Let !! ∈ !!and!!! ≠ !!, and let
!! be the thread that triggers !!. If !! is on its JC op, upon
completion of its write op !! must block until the !! JC op
completes.

Figure 5 shows how the JC op of !! affects the write
ops of the !! processes in three scenarios: (1) not affected,
(2) fully blocked, and (3) partially blocked. In the figure, !!
and the !! processes start their open, write, fsync, and
close ops in order. A sync event between the open and

Fig. 5. The runtime profile for the IOzone throughput test with
multiple user-space threads and one journal process.

write ops is used to force all threads in ! to wait until all
their open ops are completed before they continue to their
write ops. !! is the first thread to reach the metadata sync
phase in the fsync op and triggers !!. !! then begins its JC
op and locks the metadata in order to synchronize the in-
memory metadata with the storage device.

In the “not affected” scenario, let !! ∈ !!and!!! ≠ !!,
and when the !! processes complete their write ops before
!!starts its JC op, these write ops are not blocked, using
equation (1):

T!"#$% !! = !!! !!"#$% − !!! !!"#$% . (4)

In the “fully blocked” scenario, let !! ∈ !!and!!! ≠ !!,
and when the !! processes start their write ops before
!!begins its JC op and the !! processes finish their write
ops after !!completes its JC op, these write ops are fully
blocked by the JC op of !!, using equation (1) and (2):

T!"#$% !! = !!! !!" − !!! !!"#$% + T!" !!
+ !!! !!"#$% − !!! !!" .

(5)

Lastly, in the “partially blocked” scenario, let
!! ∈ !!and!!! ≠ !!, and when the !! processes start their
write ops after !!begins its JC op and the !! processes
finish their write ops after !!completes its JC op, these
write ops are blocked by the partial JC op of !!, using
equation (1) and (2):

T!"!"# !! = !!! !!" − !!! !!"#$%
+ !!! !!"#$% − !!! !!" .

(6)

3) IOzone and Slowdown

According to the status of write ops of !!s when !!
begins its JC op, these !!s can be classified into three
cases, !, !!, and!!. ! collects the !!s so that their write ops
are not affected by the JC op of !!; !!and!! collect the !!s
so that their write ops are fully or partially blocked by the
JC op of !!, respectively. We replace T!"#$% !! with the
three cases:

= !
T!"#$% !!!!∈!

+ !
T!"#$% !!!!∈!

+ !
T!"#$% !!!!∈!

!.!

(7)

We then substitute T!"#$% !! , T!"#$% !! , and
T!"#$% !! with the cost functions from (4), (5), and (6)
respectively:

= !
!!! !!"#$% − !!! !!"#$%!!∈!

+ !
!!! !!" − !!! !!"#$% + T!" !! + !!! !!"#$% − !!! !!"!!∈!

+ !
!!! !!" − !!! !!"#$% + !!! !!"#$% − !!! !!"!!∈!

!.

(8)

The optimal performance of the throughput test can be
expected when there is no !! that falls in the !!and!!
scenarios. In other words, every !! is not affected by the
JC op of !! , and all !! s fall in the ! category. Thus,
!! ∈ ! finishes its write op before !! begins its JC op, and
!! satisfies !!!! !!"#$% < !!! !!" .

The slowdown happens when more threads in the
!!and!! categories are at a higher frequency. In other
words, more threads are blocked by the JC op. These
blocked threads spend their time in the write op plus the
time waiting for the JC op and increase T!"#$% !! as
shown in (5) and (6). As a result, these blocked threads
have a negative impact on the performance measurement of
IOzone throughput tests.

B. Analytical Model of Metarates Performance
Metarates is a file system benchmark that measures the

performance of concurrent aggregate metadata transaction
rates in extremely large file systems. Metarates includes the
file creation rate (FCR) test that launches MPI processes,
!! ∈ !,! = 1. . .N, where each MPI process in parallel
issues a sequence of POSIX system calls (e.g., open(),
fsync(), and close() functions) to complete its task. The
time each MPI process takes to complete its task is
measured, and the average time for all MPI processes to

Fig. 6. The Metarates runtime profile for two or more user-space MPI
processes and two journal processes.

complete their tasks is used as the performance metric of
the Metarates file creation rate (FCR) test. From (1) we
have:

File!creation!rate!(FCR)

= !!!!!
!!"#$!! !!!"#$% !! !!!"#$% !!!!!!

!. (9)

1) Metarates and Journal Commits
Figure 6 shows the critical paths for many Metarate

threads for two journal commits. One or more user-space
MPI processes share a kernel journal process. There are
two groups in the profile, Group 1 and Group 2. The two
groups are differentiated by journal commits, !! and !!. In
Group 1, the fastest MPI process !! progresses to its fsync
op and triggers !!. There is slack between when !! starts its
fsync op and when !!actually begins its JC op (from
!!! !!"#$% to !!! !!"). The !! processes all start their
fsync ops before !! starts its JC op, and then the !! are
queued up and serviced by !!. The !! processes in Group 1
meet the !!! !!"#$% < !!! !!" condition, and these !!s
are not blocked. Group 2 collects the MPI processes that
start after the first journal process begins its JC op
!!! !!" , Thus, the !! processes in Group 2 have to wait
until !!completes its JC op before !! can start its JC op,

and therefore the wait time !!! !!" − !!! !!"#$% of !!
is significant.

2) Metarates and Slowdown

In our measurement, we find that T!"#$% K! is
significantly larger compared with T!"#$ K! and
T!"#$% K! . This is because an fsync op requires storage
device accesses, while the open and close ops involve only
memory accesses. From (9), we remove T!"#$!! and
T!"#$% !! since T!"#$!! and T!"#$% !! are relatively
small compared to T!"#$% !! ;

FCR ~ ! !!!!!
!!"#$% !!!!!!

!. (10)

Since ! is constant, the optimal performance for FCR
exists when T!"#$% !!!

!!! is minimal. We conclude
that every !! ∈ !,! = 1. . .N waits for !! on its fsync op.
In this situation, all !!s satisfy !!! !!"#$% < !!! !!" .
Thus, no !! suffers from waiting for the second journal
process, !!!!.

The slowdown happens when at higher frequencies
more threads spend significant amounts of time waiting for
the next JC op. These threads are blocked and are waiting
for the current JC op to complete before their JC op can
start. The additional waiting time for these blocked threads
increases T!"#$% !! and has a negative impact on the
measurement of the Metarates FCR test.

C. Summary Explanation of Slowdowns
Our analytical model shows that slowdowns occur at

higher frequencies when the early arrival of a single thread
(among many) causes the atomic journal commit to lock
with less batched threads than in the lower frequency case.
In the lower frequency case, the difference between the
lead thread and other threads is much smaller – so, when
the journal commit locks, more threads are batched and
overall less atomic batches occur. Slower processor
frequencies effectively increase the number of threads that
access the shared resource while reduce the overall
commits required at higher processor frequencies.

IV. OPTIMIZING ABT PERFORMANCE
The parallel threads of the I/O codes studied use a Journal
Commit (JC) operation (global locked resource) to ensure
the consistency of file metadata by batching accesses.
These Atomic Batch Transactions (ABTs) use global locks
that queue requests for a resource, lock the resource,
service the queued requests, and release the lock. ABTs are
used extensively in programs, operating systems, and
databases. The use of an ABT for the Journal Commit is
common across most Linux distributions. Our analytical
models cast blame for slowdown on atomic batch
transactions. But, ABT’s enable journaling which makes
file systems more reliable since changes are tracked before
they are atomically committed to storage.

This section serves two purposes. First, we apply our
modelling conclusions (i.e. ABT’s as implemented can hurt
performance at higher frequencies) to a real system to
remove the performance penalty when combining power
scaling with the IOzone and Metarates benchmarks.
Second, we design and implement a runtime system to
reduce the number of threads blocked by the ABTs to
improve the performance of IOzone and Metarates. Third,
we quantify the impact of the proposed approach on the
performance and reliability of IOzone and Metarates.

Figures 7 and 8 show the results of our experiments. In
each graph, the x-axis denotes CPU frequency. For line
plots, the gray area surrounding the line shows the
normalized standard deviation. For bar charts, error bars are
provided. EXT4 denotes the Linux default configuration.
NOJC denotes a modified fsync system call
implementation where the Linux kernel flushes out the
metadata directly to the disk location and altogether avoids
use of the kernel journal commit ABT mechanism. delayJC
denotes results from our proposed runtime system that vary
the length of time an ABT batches instructions. The
delayJC implementation uses the arrival rates of requests to
the JC to drive the close of the JC. After testing a number
of configurations for delayJC, we settled on a JC wait time
between requests of 16ms for IOzone and 1ms for
Metarates. In other words, if a JC arrives during this
interval, the JC batch timer is reset allowing more requests.
If not, timer expires and the JC is closed to further requests.

Fig. 7. Select results for the IOzone benchmark on the SandyBridge (HDD) system. Findings are comparable on the other systems though not
included due to space limitations.

Fig. 8. Select results for the Metarates benchmark on the Nehalem (HDD) system. Findings are comparable on the other systems though not
included due to space limitations.

The timer allows a maximum number of resets to avoid
starvation.

We also consider the amount of time a thread waits to
have its metadata committed. If this wait time is on average
the same or less than that provided by the default EXT4
Linux kernel, we conclude our runtime techniques are at
least as “reliable” as the default scheme.

A. IOzone Results
Figure 7 compares IOzone results from the default

EXT4 configuration to the NOJC and delayJC runs. Each
column of charts refers to a different thread and file size
scenario. The y-axis on the topmost graphs in each column
denotes the performance of the aggregated throughput in
KB per second. In the NOJC configuration where the JC is
avoided altogether, higher processor frequencies result in
higher throughput. In contrast, the default EXT4
configuration performance varies wildly and exhibits
slowdown at higher processor frequencies. But, in most
cases, delayJC performance is comparable to NOJC
performance and in all cases outperforms the EXT4 case.

Slowdowns (speedup < 1) and speedups versus the
slowest CPU frequency are depicted in Figure 7 in the
second row of graphs (EXT4), the third row of graphs
(NOJC), and the fourth row of graphs (delayJC).
Collectively, these graphs confirm performance improves
noticeably in both the NOJC and delayJC configurations.
Upon deeper inspection, we monitored the number of
journal commit operations and found that in all cases,
delayJC exhibited less journal commits than EXT4.

The fifth row of graphs from the top in Figure 7 shows
the delayJC runtime system significantly improves the
performance across all processor frequencies for
combinations of threads, file sizes, and records. We
observe speedups (computed as the ratio of delayJC
throughput to EXT4 throughput at each frequency
respectively) up to 3.65x for a combination of 256 threads,
128 KB file size, and 32 KB record running at 3.3 GHz in
Figure 7a; up to 2.04x for a combination of 256 threads,
256 KB file size, and 64 KB record running at 2.6 GHz in
Figure 7b; and up to 3.47x speedup for a combination of
256 threads, 512 KB file size, and 128 KB record running
at 3.3 GHz in Figure 7c.

The sixth row of graphs from the top in Figure 7 depict
the average number of threads “not” blocked by the journal
commit during the threads’ write operations. The EXT4
configuration shows less nonblocked threads at the higher
frequency (e.g. 40 nonblocked threads at 3.3GHz versus
240 nonblocked threads at 1.6Ghz in Figure 7a), and thus
causes the slowdown to happen as described analytically in
equation (8) in Section III. The NOJC configuration
disables the journal commit, so no threads get blocked –
thus, we remove NOJC from these graphs. For the delayJC
configuration, the number of non-blocked threads is close
to the number of threads used in the test. In essence, the
delayJC runtime system delays the journal commit until all

(or nearly all) the threads complete their write operations.
For the IOzone benchmark, the delayJC runtime system
improves performance by reducing the number of blocked
threads waiting on the journal commit. The average wait
time per thread also decreases and thus the delayJC runtime
system is at least as “reliable” as the EXT4 configuration.

B. Metarates Results
Figure 8 compares Metarates results from the default

EXT4 configuration to the NOJC and delayJC runs. Each
column of charts refers to a different thread and file number
scenario. The y-axis on the topmost graphs in each column
denotes the performance of Metarates. In the NOJC
configuration where the JC is avoided altogether, higher
processor frequencies result in higher throughput. The
metarate critical path does not include a write operation (as
in the IOzone case). Hence, performance is much more
sensitive to the journal commit disk access variance. While
the delayJC configuration consistently outperforms the
EXT configuration, the delayJC misses some opportunities
to avoid some slowdowns.

Slowdowns (speedup < 1) and speedups versus the
slowest CPU frequency are depicted in Figure 8 in the
second row of graphs (EXT4), the third row of graphs
(NOJC), and the fourth row of graphs (delayJC).
Collectively, these graphs confirm performance improves
noticeably in the NOJC configuration. While the
performance of delayJC is always better than EXT4, the
ability of delayJC to eliminate slowdowns in Metarates is
mixed. For higher numbers of threads, delayJC
performance is consistent as processor frequency scales.
However, for lower numbers of threads, disk noise in the
journal commit masks some of the gains from the dynamic
runtime system. To confirm the effects of delayJC, we
monitored the number of journal commit operations and
found that in all cases, delayJC exhibited less journal
commits than EXT4.

Despite the mixed results in slowdown effectiveness
versus eliminating the journal commit altogether, delayJC
is a significant improvement over EXT4. The fifth row of
graphs from the top in Figure 8 shows the delayJC runtime
system significantly improves the performance across all
processor frequencies for combinations of threads and
number of files. We observe speedups (computed as the
ratio of delayJC throughput to EXT4 throughput at each
frequency respectively) up to 2.57x for 4 MPI processes
with 4 files at 3.1 GHz in Figure 8a; up to 1.82x speedup
for 16 MPI processes with 16 files at 2.0 GHz in Figure 8b;
and up to 1.49x for 32 MPI processes with 32 files running
at 2.9 GHz in Figure 8c.

The sixth row of graphs from the top in Figure 8 depicts
the average time that a thread waits before it is serviced by
the journal commit for both the EXT4 and the delayJC
configurations. The EXT4 configuration shows longer wait
times at higher frequencies (e.g. 25 ms wait time at 3.1GHz
versus 18 ms wait time at 1.7GHz in Figure 8a), and thus

causes the slowdown to happen as described analytically in
equation (10) in Section III. The NOJC configuration
disables the journal commit and has an average wait time of
zero – thus, we remove NOJC from these graphs. For the
delayJC configuration, the wait time is significantly
reduced for the combination of 4 MPI processes and 4 files,
as shown in 9a. This is because SandyBridge (HDD) has
four CPU cores, and each of the four MPI processes starts
roughly at the same time. The delayJC runtime system
delays the journal commit for 1ms to sufficiently queue all
the MPI processes for the same journal commit. When the
number of MPI processes scales from 4 to 16 and 32, as
shown in 9a, 9b, and 9c (respectively), we observe that the
average wait time increases. In these configurations, the
number of MPI threads exceeds the available number of
cores. In such situations, threads are delayed further due to
contention and the delayJC runtime adjusts ABT delays to
compensate. The increase in average wait time among
threads correlates to drops in overall speedups (longer wait
time results in less speedup). For example, the average wait
times for delays around 1ms show speedups of 1.83x–2.57x
for 4 MPI processes (see Figure 8a). Similarly, the average
wait times for 12 ms delay show speedups of 1.31x–1.49x
for 32 MPI processes (see Figure 8c).

As in the IOzone case, the delayJC configuration
reduces the average wait time for each thread on the journal
commit. This means that compared to the EXT4 case, our
delayJC runtime system reduces the likelihood that that
(should a fault occur) metadata is not committed to the
disk. We conclude that our delayJC runtime system is at
least as reliable as the default Linux kernel EXT4
configuration.

RELATED WORK
Slowdowns at higher frequencies have been observed in

various contexts including: during MPI communication
phases [1-3]; during parallel I/O phases [4-6]; on Fourier
transform codes [7, 8]; on parallel fluid dynamics codes
[9]; on vehicle scheduling codes [10-12]; on the
MapReduce Sort benchmark [13], on hard disk drive
systems [14, 15], on synthetic CPU bound codes [16-18],
and in memory architectures [19-21].

Despite the number and diversity of these experiments,
none of this work conclusively identifies the root cause of
the slowdowns. Some leave the investigation to future work
[25] [3], while others offer unsubstantiated (but reasonable)
hypotheses citing bus interaction [13, 26, 27],
synchronization [9] and system- or benchmark-specific
details [28-30].

Based on our findings in the literature and to the best of
our knowledge, no detailed scientific studies of power-
scalable slowdowns had been conducted prior to our work.
None of the aforementioned work explore slowdowns in
much detail nor do they conclusively isolate the root cause
of observed slowdowns at higher processor frequencies. In
contrast, we isolate slowdowns, model the performance of

atomic batch transactions in power-scalable systems, and
implement a runtime system demonstrating the tradeoffs
between eliminating slowdown at the cost of reliability.

LIMITS, CONCLUSIONS, FUTURE
Our results are limited to the systems and benchmarks

studied. Broader studies could yield broader conclusions.
For example, we have measured slowdowns in varMail,
MySQL, and TPC-C, but application complexity makes
isolation and modelling more difficult. Additionally, our
approach only identified a particular cause of slowdown;
there may be others such as residual slowdowns in
Metarate. Our modelling efforts focused strictly on
performance to isolate the cause of slowdowns. Future
versions would be more useful if they integrated the effects
of power scaling directly in the models for prediction.

Overall, we have conclusively shown that in some
circumstances, higher power and processing speeds can
cause harm. Though some have noted this previously, none
have isolated the root cause of such slowdowns. Our results
indicate that system complexity is introducing unexpected,
counter-intuitive performance issues that are increasingly
difficult to isolate due to high system variance, critical path
complexity, and non-determinism. In future work, we
would like to isolate other root causes of slowdown.
Though we were able to improve performance up to 3.65x
over the EXT4 default configuration, our delayJC approach
is somewhat static (fixed interval) and would likely be
improved with additional runtime automated tuning.
Ultimately, would like to create techniques that enable
ABTs without conflict with power scalable features.

ACKNOWLEDGMENTS
This material is based upon work supported by the

National Science Foundation under Grant No. 0910784 and
0905187.

REFERENCES
[1] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal, "Adaptive,

transparent frequency and voltage scaling of communication phases
in MPI programs," in ACM/IEEE conference on Supercomputing,
Tampa, Florida, 2006, p. 107.

[2] L. Wang, G. v. Laszewski, J. Dayal, and F. Wang, "Towards Energy
Aware Scheduling for Precedence Constrained Parallel Tasks in a
Cluster with DVFS," presented at the 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, 2010.

[3] M. Etinski, J. Corbalan, J. Labarta, and M. Valero, "Understanding
the future of energy-performance trade-off via DVFS in HPC
environments," J. Parallel Distrib. Comput., vol. 72, pp. 579-590,
2012.

[4] R. Ge, X. Feng, S. S., and X.-H. Sun, "Characterizing energy
efficiency of I/O intensive parallel applications on power-aware
clusters," in IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum (IPDPSW),
2010, pp. 1-8.

[5] R. Ge, "Evaluating Parallel I/O Energy Efficiency," in IEEE/ACM
Int'l Conference on Green Computing and Communications
(GreenCom) & Int'l Conference on Cyber, Physical and Social
Computing (CPSCom), 2010, pp. 213-220.

[6] R. Ge, X. Feng, and X.-H. Sun, "SERA-IO: Integrating Energy
Consciousness into Parallel I/O Middleware," in 12th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 2012, pp. 204-211.

[7] M. Telgarsky, J. C. Hoe, and J. M. F. Moura, "SPIRAL: Joint
runtime and energy optimization of linear transforms.," presented at
the International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2006.

[8] Y. Cheng and Y. Zeng, "Automatic Energy Status Controlling with
Dynamic Voltage Scaling in Power-Aware High Performance
Computing Cluster," in 12th International Conference on Parallel
and Distributed Computing, Applications and Technologies
(PDCAT), 2011, pp. 412-416.

[9] N. B. Lakshminarayana and H. Kim, "Understanding performance,
power and energy behavior in asymmetric multiprocessors," in IEEE
International Conference on Computer Design (ICCD), 2008, pp.
471-477.

[10] E. L. Sueur and G. Heiser, "Dynamic voltage and frequency scaling:
the laws of diminishing returns," presented at the Proceedings of the
2010 international conference on Power aware computing and
systems, Vancouver, BC, Canada, 2010.

[11] S. Srinivasan, L. Zhao, R. Illikkal, and R. Iyer, "Efficient interaction
between OS and architecture in heterogeneous platforms," SIGOPS
Oper. Syst. Rev., vol. 45, pp. 62-72, 2011.

[12] F. Pan, V. W. Freeh, and D. M. Smith, "Exploring the energy-time
tradeoff in high-performance computing," in 19th IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), 2005, p. 9 pp.

[13] T. Wirtz and R. Ge, "Improving MapReduce energy efficiency for
computation intensive workloads," presented at the International
Green Computing Conference and Workshops, 2011.

[14] T. Saito, K. Sato, H. Sato, and S. Matsuoka, "Energy-aware I/O
optimization for checkpoint and restart on a NAND flash memory
system," presented at the 3rd Workshop on Fault-tolerance for HPC
at extreme scale, New York, New York, USA, 2013.

[15] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony, and R.
Rajkumar, "Critical power slope: understanding the runtime effects
of frequency scaling," presented at the 16th international conference
on Supercomputing, New York, New York, USA, 2002.

[16] R. Kotla, A. Devgan, S. Ghiasi, T. Keller, and F. Rawson,
"Characterizing the impact of different memory-intensity levels," in
IEEE International Workshop on Workload Characterization
(WWC), 2004, pp. 3-10.

[17] R. Kotla, S. Ghiasi, T. Keller, and F. Rawson, "Scheduling processor
voltage and frequency in server and cluster systems," in 19th IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), 2005, p. 8 pp.

[18] S. Ghiasi, T. Keller, and F. Rawson, "Scheduling for heterogeneous
processors in server systems," presented at the 2nd conference on
Computing frontiers, Ischia, Italy, 2005.

[19] K. Malkowski, G. Link, P. Raghavan, and M. J. Irwin, "Load Miss
Prediction - Exploiting Power Performance Trade-offs," in IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), 2007, pp. 1-8.

[20] R. Schone, D. Hackenberg, and D. Molka, "Memory performance at
reduced CPU clock speeds: an analysis of current x86_64
processors," presented at the 2012 USENIX conference on Power-
Aware Computing and Systems, Hollywood, CA, 2012.

[21] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu,
"Memory power management via dynamic voltage/frequency
scaling," presented at the 8th ACM international conference on
Autonomic computing, Karlsruhe, Germany, 2011.

[22] C. Philip, L. Samuel, R. Robert, V. Murali, K. Julian, and L.
Thomas, "Small-file access in parallel file systems," in IEEE
International Symposium on Parallel & Distributed Processing
(IPDPS), 2009, pp. 1-11.

[23] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright, "A nine year
study of file system and storage benchmarking," ACM Transactions
on Storage (TOS), vol. 4, p. 5, 2008.

[24] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification: John
Wiley & Sons, 2012.

[25] Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and D.
Takahashi, "Profile-based optimization of power performance by
using dynamic voltage scaling on a PC cluster," presented at the 20th
international conference on Parallel and distributed processing,
Rhodes Island, Greece, 2006.

[26] V. W. Freeh and D. K. Lowenthal, "Using multiple energy gears in
MPI programs on a power-scalable cluster," presented at the tenth
ACM SIGPLAN symposium on Principles and practice of parallel
programming, Chicago, IL, USA, 2005.

[27] C.-h. Hsu and W.-c. Feng, "A Power-Aware Run-Time System for
High-Performance Computing," in ACM/IEEE Supercomputing
Conference (SC), 2005, pp. 1-1.

[28] R. E. Grant and A. Afsahi, "Improving system efficiency through
scheduling and power management," presented at the IEEE
International Conference on Cluster Computing, 2007.

[29] R. E. Grant and A. Afsahi, "Improving energy efficiency of
asymmetric chip multithreaded multiprocessors through reduced OS
noise scheduling," Concurr. Comput. : Pract. Exper., vol. 21, pp.
2355-2376, 2009.

[30] T. Hruby, H. Bos, and A. S. Tanenbaum, "When Slower is Faster:
On Heterogeneous Multicores for Reliable Systems," in USENIX
Annual Technical Conference (ATC), San Jose, CA, USA, 2013.

