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Abstract—Power states in power-scalable systems are 
managed to maximize performance and reduce energy waste. 
Power-scalable processor capabilities (e.g., Intel Turbo Boost) 
embrace a “faster is better” approach to power management. 
While these technologies can vastly improve performance and 
energy efficiency, there is a growing body of evidence that 
“faster is not always better”. For example, in some I/O 
intensive benchmarks, we observe up to 47% performance 
loss when running codes at faster (higher power) frequencies 
versus slower (lower power) frequencies. To the best of our 
knowledge, this is the first work to systematically and 
accurately pinpoint the root cause of these types of slowdowns. 
The lack of such studies is likely due to three challenges we 
overcome in this work: 1) high runtime system variance; 2) 
bottleneck isolation across user- and system-space boundaries; 
and 3) non-determinism in parallel codes. Our analytical 
model-driven approach identifies Atomic Batch Transactions 
(ABTs) in the Linux kernel as the cause of slowdowns at 
higher processor speeds. We propose and evaluate the use of 
power-aware ABT's that can increase performance more than 
3-fold over the default Linux kernel while maintaining 
comparable reliability. Our work motivates the need for more 
studies that potentially reconsider the "faster is better" design 
paradigm. 

Keywords—Performance, energy efficiency, atomic batch 
transactions. 

I. INTRODUCTION 
Energy efficiency is now a driving force in system 

design. One consequence is a notable increase in autonomic 
power management. For example, nearly all Intel and AMD 
processors now feature dynamic voltage and frequency 
scaling (DVFS) “governors” that promise to boost thread 
and ultimately application performance. 

These governors generally boost processor power and 
speed in response to utilization and operate on the principal 
that higher power and frequency typically results in 
improved performance. While memory or I/O issues may 
stifle performance gains, the assumption is that higher 
power and frequency do no harm aside from perhaps at 
times wasting energy. 

Figure 1 contradicts the conventional wisdom that 
higher power and frequency do no harm to performance. 
The figure shows IOzone benchmark performance (KB/sec) 

for the same system running at two different (fixed) 
processor frequencies (1.6 GHz and 3.3 GHz). Normalizing 
to the performance at the lowest available frequency for 
this IOzone run (1.6 GHz), the IOzone benchmark, which is 
typically used to compare vendor I/O performance across 
systems, runs 47% slower at the highest available 
frequency (3.3 GHz)1. 

 
Fig. 1. IOzone performance on a Dell T1100 using a Xeon E3-1270 3300 
MHz (SandyBridge) quad-core with 8GB of DDR3 RAM and a 250 GB 
7200 rpm hard drive. The system runs the CentOS 6.4 Linux distribution 
(kernel version 3.4.2). 

To the best of our knowledge, no work has attempted to 
isolate and model the root causes of the slowdowns that 
Figure 1 exemplifies. Nonetheless, other researchers in 
several different contexts [1-21] have independently 
confirmed these types of slowdowns. 

In some cases [1-6, 10-12, 14-21], the slowdowns were 
not significant enough to warrant further study. In other 
cases, the slowdowns were significant but the authors 
proffer unconfirmed theories as to the root cause. The goal 
of our work is to explain the root cause of significant 
slowdowns we’ve observed in I/O performance. 

Challenges. Unfortunately, isolating the cause of such 
slowdowns is non-trivial. First, I/O system measurements 
are noisy which makes simply identifying slowdowns 
problematic. Second, even the simplest multi-threaded I/O 
codes are extremely complex with parallel critical paths 

                                                                    
1 Astute readers will undoubtedly want more details for these experiments. 

Though this is shown as a singular result, this is the average result of 
over 50 runs. We discuss variance and other related details in our 
experimental results section. 



that repeatedly cross user- and kernel space boundaries due 
to numerous calls to user and system libraries. Isolating the 
critical path requires intimate knowledge of both the 
application being studied and the performance path and 
nuances of the operating system kernel. Third, thread 
arrival times and their use of resources in parallel I/O codes 
are inherently non-deterministic. Nonetheless, highly 
parallel codes with high variance, complicated critical 
paths, and inherent non-determinism are exactly the codes 
that exhibit slowdown behavior. Furthermore, experimental 
variance, the complexity of critical paths, and non-
determinism are steadily increasing in emergent systems 
exacerbating the challenge of isolating slowdowns and their 
root causes. 

Contributions. Our main contribution is the 
identification of resource contention among I/O threads as 
the root cause of the observed I/O slowdowns. With the use 
of code and kernel instrumentation, exhaustive 
experiments, and deep insight to the inner workings of the 
Linux I/O subsystem, we overcome the aforementioned 
challenges of variance, complexity and non-determinism. 
We derive an analytical model to explain the behavior of 
two parallel I/O benchmarks that exhibit significant 
slowdown when processors speed up. We verify our 
findings experimentally and propose an adaptive runtime 
system to avoid slowdowns during processor speedups. 

II. EXPERIMENTAL APPROACH 
We began our work with exhaustive testing for 

significant slowdowns across a large number of 
applications suggested by the literature [1-6]. Figures 2 and 
3 show the average speedup from select IOzone and 
Metarates experiments2. IOzone is a file system benchmark 
that generates and measures a variety of file operations. 
This benchmark is part of the Phoronix Test Suite3 used by 
review sites including Tom’s Hardware4. In our tests, we 
measured the maximum achievable throughput for read-
write operations on an exhaustive combination of threads 
(up to 256), file sizes (up to 16 MB), and record sizes (up 
to 16 MB). Metarates is a file system benchmark that 
measures the performance of concurrent aggregate 
metadata transaction rates in extremely large file systems 
[22]. In our tests, we measured the maximum achievable 
throughput for read-write operations on exhaustive 
combinations of threads (up to 64) and files (up to 256). 

Figures 2 and 3 demonstrate the aforementioned 
variance challenge. The gray area in each figure shows the 
relative standard deviations (RSDs) for the select IOzone 
and Metarates experiments. For example, IOzone for a 
given number of threads (256), file size (128 KB), and 

                                                                    
2 We disable the turbo boost and hyper-threading features so we can 

manually isolate performance at each static frequency and isolate 
slowdowns. 

3 http://www.phoronix-test-suite.com/ 
4 http://www.tomshardware.com/ 

record size (32 KB) on the system running at all available 
frequencies exhibits RSDs from 11-55%; Metarates for a 
given number of threads (4) and files (4) on the system 
running at all available frequencies exhibits RSDs from 13-
32%. We overcome these significant variances using 
exhaustive testing. We run all of the combinations of 
benchmark parameters mentioned across all the available 
P-states for each processor. For the data shown herein, the 
number of total repeat experiments (>50 in all cases) for a 
given data point was selected to achieve 95% statistical 
confidence [23]. A full sweep across these parameter sets 
takes about one and a half months to complete. 

IOzone and Metarate were selected for detailed study 
and modelling for several reasons. First the benchmarks 
themselves showed acute sensitivity to processor speeds as 
observed in Figures 2 and 3. Second, each thread performs 
a short sequence of I/O read and write operations. This 
reduces the amount of complexity in the critical path for 
each thread. This allowed us to account for non-
determinism in parallel thread execution by grouping 
threads based upon their arrival order at shared resources. 
Third, the benchmarks are used to compare hardware I/O 
implementations which means slowdowns could be 
exploited to game results that affect user adoption. 
Furthermore, these benchmarks represent many types of 
common database transactions with high I/O frequency. 

In Figures 2 and 3, IOzone for a given number of 
threads (256), file size (128 KB), and record size (32 KB) 
on the system running at 3.3GHz is 47% slower than 
running on the same system at 1.6GHz; Metarates for a 
given number of threads (4) and files (4) on the system 
running at 3.1GHz is 20% slower than running on the same 
system running at 1.6GHz.  

Fig. 2. Select results from IOzone benchmark on SandyBridge (HDD). 
Findings are comparable on the other systems though not included due to 
space limitations. SandyBridge HDD is a Dell T1100 using a Xeon E3-
1270 3.3 GHz quad-core with 8 GB of DDR3 RAM and a 250 GB 7200 
rpm hard drive. 

Fig. 3. Select results from Metarates benchmark on Nehalem (HDD). 
Findings are comparable on the other systems though not included due to 
space limitations. Nehalem HDD is a Dell T3500 using a W3550 3.00 
GHz () quad-core with 6 GB of DDR3 RAM and a 250 GB 7200 rpm hard 
drive. 



III. MODELING IOZONE AND METARATES 
Following a detailed analysis of the IOzone benchmark 

and a deep dive on the Linux I/O subsystem particulars, 
Figure 4 shows our conceptual view of the critical path of a 
single IOzone thread. 

We observe that at a high-level Figure 4 shows where 
time is spent in a given thread. Every thread in IOzone 
(from left to right in the figure) begins by opening a file, 
then waiting, then writing to a file. Following the write, an 
fsync operation occurs causing the critical path to enter 
kernel-space by invoking a kernel function called a journal 
commit (JC). When the kernel finishes its commit, control 
returns to the thread which closes the file. To ease 
description of what happens when many such threads run in 
parallel, we use an analytical model. While the model is 
used to isolate the cause of slowdowns, users may jump to 
the end of this section for a high-level explanation of our 
derived findings. 

A. Analytical Model of IOzone Performance 
We now present an analytical model of atomic batch 

transaction for IOzone performance. The model uses the 
parameters measured from the aforementioned Linux 
kernel instrumentation (see Tables 2 and 3). 

1) User-space I/O Threads 

Suppose a parallel I/O workload launches ! threads, 
where each thread starts at the same time and 
simultaneously makes POSIX I/O system calls to its own 
file. Let ! represent a set of I/O threads. The total number 
of threads is ! = !. Each element in ! represents one 
individual thread, from !!,!!,⋯ , !"!!!. !! indicates the i-
th thread in !, using i as an index to select a thread from !. 

Each thread receives a task with size S and requires a 
series of operations (ops) to complete. The ops that a thread 
can execute are the open, write, close, and fsync POSIX 
I/O calls. Each thread requires more than one op for its 
task. Each op is a blocking system call, so each thread 
needs to complete its current op before the thread can 
progress to its next op. 

For each op, !!" is used to indicate the event where the 
op begins, and !!" is used to refer to the event where the op 
ends. When !! (the i-th thread in !) begins its op, !!! !!"  

is used to indicate the time stamp of this event, and !!! !!"  
is used to refer to the time stamp of when !! finishes its op. 
Let T!" !!  represent the time elapsed for the i-th thread to 
complete its op. Then T!" !!  can be calculated by 
subtracting the time stamp when the i-th thread ends its op 
from the time stamp when the i-th thread begins its op. 

!!!!!!!!!!!!!!!!!!!!!!!!!T!" !! = !!! !!" − !!!! !!" .               (1) 

2) The Journal Process 

When a parallel I/O workload requires user-space I/O 
threads to execute fsync ops before their completion of the 

TABLE 2. Operation(op)-dependent notations. 

op Definition 
User-space ops 

open Open a file via the POSIX system call open() 

write Write data to a file via the POSIX system call write() 

close Close a file via the POSIX system call close() 

fsync Synchronize data and metadata from memory to 
storage device via the POSIX system call fsync() 

Kernel-space ops 

DFLUSH Flush in-memory data to storage device 

JCFLUSH Flush in-memory metadata to storage device via 
journal 

JC Journal commit 

 

TABLE 1. Thread/journal-dependent notations. 

Notations Definition 

! Set of threads, ! = {!! + !! +⋯+ !!} 
!! The i-th thread in ! 

S Size of the workload 

N Total number of threads, |!| = ! 

!!" The event when op begins 

!!" The event when op finishes 

!!!!!!"! The timestamp when the i-th thread begins its op 

!!!!!!"! The timestamp when the i-th thread finishes its op 

T!"(!!) Time elapsed for the i-th thread to complete its op 

! Set of journal processes,!!! = {!! + !! +⋯+ !!} 
O Total number of journal processes, |!| = ! 

!! The p-th journal process in ! 

!!!!!!"! The timestamp when the p-th journal process begins 
its op 

!!!!!!"! The timestamp when the p-th journal process 
finishes its op 

T!"!!!!! Time elapsed for the p-th journal process to complete 
its op 

 

 

Fig. 4. The interaction between a thread and a journal process for the 
IOzone benchmark. 



tasks, a set of journal processes will be activated in the 
Linux kernel. There is only one active journal process 
running at a time in the Linux kernel. The job for a journal 
process is to issue a journal commit operation, which 
synchronizes the in-memory metadata (We assume ordered 
mode journaling; the default configuration) in the virtual 
file system of the Linux kernel with the permanent (non-
volatile storage).  

Let ! represent the journal processes that are activated 
by the user-space I/O threads via their fsync ops. The total 
number of the journal processes is ! = !. Each element 
in !  represents one individual journal process, from 
!!, !!,⋯ , !"!!!. Let !! indicate the p-th journal process in 
!, using p as an index to specify a journal process from !. 
For each op, !!" is used to indicate the event that the op 
begins, and !!" is used to refer to the event that the op ends. 
When the p-th journal process !! issues its op, !!! !!"  is 
used to indicate the time stamp of this event, and !!! !!"  
is used to refer to the time stamp of when !! finishes its op. 
For now, we assume that the kernel journal process issues 
only one operation: the journal commit (JC) op, but we 
will remove this constraint shortly (see Figure 6). 

Let T!" !!  represent the elapsed time for the p-th 
journal process to complete its op. Then T!" !!  can be 
obtained by subtracting the time stamp when the p-th 
journal process ends its op from the time stamp when the p-
th journal process begins its op. 

!!!!!!!!!!!!!!!!!!!!T!" !! = !!! !!" − !!!! !!" .       (2) 

The kernel-space journal processes may influence the 
user-space I/O threads during their write ops and fsync ops. 
The IOzone benchmark threads test the file system’s read-
write performance by using POSIX system calls (e.g., 
open(), write(), fsync(), and close() functions). Specifically, 
IOzone launches threads, where each thread in parallel 
issues POSIX system calls and completes its task by 
creating a file, writing data to the file, flushing 
data/metadata to the storage device, and then closing the 
file. The time spent writing the data to a file by each thread 
is measured as the result, and the benchmark performance 
metric is calculated by accumulating the results from all 
threads. From (1) we have: 

IOzone!Throughput!"!#!$%_!"#$% 

= !
!!"#$% !!

!
!!! .                                (3) 

From the IOzone benchmark metric, we observe that 
variance in reported results occurs in the measured time for 
the write operation (T!"#$% !! ). The aforementioned high 
variances come from this operation and, as mentioned, we 
use a brute force exhaustive approach to obtain statistical 
confidence of 95% in all of our experiments. 

IOzone and Journal Commits. Let !!  be the first 
thread that triggers the journal process!!! via the fsync op. 

!!  issues four ops—open, write, fsync, and close—to 
complete its task. Figure 4 shows a group of events 
belonging to !! and !!, with the time increasing from left 
to right.!!! starts by issuing an open op to create an empty 
file and waits for all threads to finish their open ops before 
it progresses to its write op. This is the synchronization 
event in the IOzone throughput test that ensures all threads 
start their write ops at the same time. Next !!  issues a 
write op with a workload of size S and progresses to its 
fsync op. When !! is on its fsync op, it first waits for the 
kernel to flush out its in-memory file data, and then it waits 
for the kernel journal process !!’s JC op to synchronize the 
in-memory file metadata with the storage device. After 
L!completes its JC op, K! progresses to its close op and 
finishes its task. 

During the phase that !!  is on its JC op, the file 
system’s metadata is locked and is synchronized with the 
storage device. Any write op that attempts to update the 
metadata is blocked and has to wait until the metadata is 
released by !!, which is the reason that these blocked write 
ops take a significantly long time to complete. These 
blocked write ops are forced to wait for the duration of 
time spent in data transmission between the memory and 
the storage device, while the unblocked write ops involve 
only the memory accesses. Let !! ∈ !!and!!! ≠ !!, and let 
!! be the thread that triggers !!. If !! is on its JC op, upon 
completion of its write op !! must block until the !! JC op 
completes. 

Figure 5 shows how the JC op of !! affects the write 
ops of the !! processes in three scenarios: (1) not affected, 
(2) fully blocked, and (3) partially blocked. In the figure, !! 
and the !!  processes start their open, write, fsync, and 
close ops in order. A sync event between the open and 

 

 
Fig. 5. The runtime profile for the IOzone throughput test with 
multiple user-space threads and one journal process. 

 



write ops is used to force all threads in ! to wait until all 
their open ops are completed before they continue to their 
write ops. !! is the first thread to reach the metadata sync 
phase in the fsync op and triggers !!. !! then begins its JC 
op and locks the metadata in order to synchronize the in-
memory metadata with the storage device. 

In the “not affected” scenario, let !! ∈ !!and!!! ≠ !!, 
and when the !! processes complete their write ops before 
!!starts its JC op, these write ops are not blocked, using 
equation (1): 

T!"#$% !! = !!! !!"#$% − !!! !!"#$% .                  (4) 

In the “fully blocked” scenario, let !! ∈ !!and!!! ≠ !!, 
and when the !!  processes start their write ops before 
!!begins its JC op and the !! processes finish their write 
ops after !!completes its JC op, these write ops are fully 
blocked by the JC op of !!, using equation (1) and (2):  

T!"#$% !! = !!! !!" − !!! !!"#$% + T!" !!
+ !!! !!"#$% − !!! !!" . 

(5) 

Lastly, in the “partially blocked” scenario, let 
!! ∈ !!and!!! ≠ !!, and when the !! processes start their 
write ops after !!begins its JC op and the !!  processes 
finish their write ops after !!completes its JC op, these 
write ops are blocked by the partial JC op of !!, using 
equation (1) and (2): 

T!"!"# !! = !!! !!" − !!! !!"#$%
+ !!! !!"#$% − !!! !!" . 

(6) 

3) IOzone and Slowdown 

According to the status of write ops of !!s when !! 
begins its JC op, these !!s can be classified into three 
cases, !, !!, and!!. ! collects the !!s so that their write ops 
are not affected by the JC op of !!; !!and!! collect the !!s 
so that their write ops are fully or partially blocked by the 
JC op of !!, respectively. We replace T!"#$% !!  with the 
three cases: 

= !
T!"#$% !!!!∈!

+ !
T!"#$% !!!!∈!

+ !
T!"#$% !!!!∈!

!.!

(7) 

We then substitute  T!"#$% !! , T!"#$% !! , and 
T!"#$% !!  with the cost functions from (4), (5), and (6) 
respectively: 

 

= !
!!! !!"#$% − !!! !!"#$%!!∈!

 

+ !
!!! !!" − !!! !!"#$% + T!" !! + !!! !!"#$% − !!! !!"!!∈!

 

+ !
!!! !!" − !!! !!"#$% + !!! !!"#$% − !!! !!"!!∈!

!. 

(8) 

The optimal performance of the throughput test can be 
expected when there is no !!  that falls in the !!and!! 
scenarios. In other words, every !! is not affected by the 
JC op of !! , and all !! s fall in the !  category. Thus, 
!! ∈ ! finishes its write op before !! begins its JC op, and 
!! satisfies !!!! !!"#$% < !!! !!" . 

The slowdown happens when more threads in the 
!!and!!  categories are at a higher frequency. In other 
words, more threads are blocked by the JC op. These 
blocked threads spend their time in the write op plus the 
time waiting for the JC op and increase T!"#$% !!  as 
shown in (5) and (6). As a result, these blocked threads 
have a negative impact on the performance measurement of 
IOzone throughput tests. 

B. Analytical Model of Metarates Performance 
Metarates is a file system benchmark that measures the 

performance of concurrent aggregate metadata transaction 
rates in extremely large file systems. Metarates includes the 
file creation rate (FCR) test that launches MPI processes, 
!! ∈ !,! = 1. . .N, where each MPI process in parallel 
issues a sequence of POSIX system calls (e.g., open(), 
fsync(), and close() functions) to complete its task. The 
time each MPI process takes to complete its task is 
measured, and the average time for all MPI processes to 

 
Fig. 6. The Metarates runtime profile for two or more user-space MPI 
processes and two journal processes. 

 



complete their tasks is used as the performance metric of 
the Metarates file creation rate (FCR) test. From (1) we 
have: 

File!creation!rate!(FCR) 

= !!!!!
!!"#$ !! !!!"#$% !! !!!"#$% !!!!!!

!.       (9) 

1) Metarates and Journal Commits 
Figure 6 shows the critical paths for many Metarate 

threads for two journal commits. One or more user-space 
MPI processes share a kernel journal process. There are 
two groups in the profile, Group 1 and Group 2. The two 
groups are differentiated by journal commits, !! and !!. In 
Group 1, the fastest MPI process !! progresses to its fsync 
op and triggers !!. There is slack between when !! starts its 
fsync op and when !!actually begins its JC op (from 
!!! !!"#$%  to !!! !!" ). The !!  processes all start their 
fsync ops before !! starts its JC op, and then the !! are 
queued up and serviced by !!. The !! processes in Group 1 
meet the !!! !!"#$% < !!! !!"  condition, and these !!s 
are not blocked. Group 2 collects the MPI processes that 
start after the first journal process begins its JC op 
!!! !!" , Thus, the !! processes in Group 2 have to wait 
until !!completes its JC op before !! can start its JC op, 

and therefore the wait time !!! !!" − !!! !!"#$%  of !! 
is significant. 

2) Metarates and Slowdown 

In our measurement, we find that T!"#$% K!  is 
significantly larger compared with T!"#$ K!  and 
T!"#$% K! . This is because an fsync op requires storage 
device accesses, while the open and close ops involve only 
memory accesses. From (9), we remove T!"#$ !!  and 
T!"#$% !!  since T!"#$ !!  and T!"#$% !!  are relatively 
small compared to T!"#$% !! ; 

FCR  ~  ! !!!!!
!!"#$% !!!!!!

!.                        (10) 

Since ! is constant, the optimal performance for FCR 
exists when T!"#$% !!!

!!!  is minimal. We conclude 
that every !! ∈ !,! = 1. . .N waits for !! on its fsync op. 
In this situation, all !!s satisfy !!! !!"#$% < !!! !!" . 
Thus, no !! suffers from waiting for the second journal 
process, !!!!. 

The slowdown happens when at higher frequencies 
more threads spend significant amounts of time waiting for 
the next JC op. These threads are blocked and are waiting 
for the current JC op to complete before their JC op can 
start. The additional waiting time for these blocked threads 
increases T!"#$% !!  and has a negative impact on the 
measurement of the Metarates FCR test. 

C. Summary Explanation of Slowdowns 
Our analytical model shows that slowdowns occur at 

higher frequencies when the early arrival of a single thread 
(among many) causes the atomic journal commit to lock 
with less batched threads than in the lower frequency case. 
In the lower frequency case, the difference between the 
lead thread and other threads is much smaller – so, when 
the journal commit locks, more threads are batched and 
overall less atomic batches occur. Slower processor 
frequencies effectively increase the number of threads that 
access the shared resource while reduce the overall 
commits required at higher processor frequencies. 

IV. OPTIMIZING ABT PERFORMANCE 
The parallel threads of the I/O codes studied use a Journal 
Commit (JC) operation (global locked resource) to ensure 
the consistency of file metadata by batching accesses. 
These Atomic Batch Transactions (ABTs) use global locks 
that queue requests for a resource, lock the resource, 
service the queued requests, and release the lock. ABTs are 
used extensively in programs, operating systems, and 
databases. The use of an ABT for the Journal Commit is 
common across most Linux distributions. Our analytical 
models cast blame for slowdown on atomic batch 
transactions. But, ABT’s enable journaling which makes 
file systems more reliable since changes are tracked before 
they are atomically committed to storage. 

This section serves two purposes. First, we apply our 
modelling conclusions (i.e. ABT’s as implemented can hurt 
performance at higher frequencies) to a real system to 
remove the performance penalty when combining power 
scaling with the IOzone and Metarates benchmarks. 
Second, we design and implement a runtime system to 
reduce the number of threads blocked by the ABTs to 
improve the performance of IOzone and Metarates. Third, 
we quantify the impact of the proposed approach on the 
performance and reliability of IOzone and Metarates. 

Figures 7 and 8 show the results of our experiments. In 
each graph, the x-axis denotes CPU frequency. For line 
plots, the gray area surrounding the line shows the 
normalized standard deviation. For bar charts, error bars are 
provided. EXT4 denotes the Linux default configuration. 
NOJC denotes a modified fsync system call 
implementation where the Linux kernel flushes out the 
metadata directly to the disk location and altogether avoids 
use of the kernel journal commit ABT mechanism. delayJC 
denotes results from our proposed runtime system that vary 
the length of time an ABT batches instructions. The 
delayJC implementation uses the arrival rates of requests to 
the JC to drive the close of the JC. After testing a number 
of configurations for delayJC, we settled on a JC wait time 
between requests of 16ms for IOzone and 1ms for 
Metarates. In other words, if a JC arrives during this 
interval, the JC batch timer is reset allowing more requests. 
If not, timer expires and the JC is closed to further requests. 



 

 
Fig. 7. Select results for the IOzone benchmark on the SandyBridge (HDD) system. Findings are comparable on the other systems though not 
included due to space limitations. 

 

 
Fig. 8. Select results for the Metarates benchmark on the Nehalem (HDD) system. Findings are comparable on the other systems though not 
included due to space limitations. 



The timer allows a maximum number of resets to avoid 
starvation. 

We also consider the amount of time a thread waits to 
have its metadata committed. If this wait time is on average 
the same or less than that provided by the default EXT4 
Linux kernel, we conclude our runtime techniques are at 
least as “reliable” as the default scheme. 

A. IOzone Results 
Figure 7 compares IOzone results from the default 

EXT4 configuration to the NOJC and delayJC runs. Each 
column of charts refers to a different thread and file size 
scenario. The y-axis on the topmost graphs in each column 
denotes the performance of the aggregated throughput in 
KB per second. In the NOJC configuration where the JC is 
avoided altogether, higher processor frequencies result in 
higher throughput. In contrast, the default EXT4 
configuration performance varies wildly and exhibits 
slowdown at higher processor frequencies. But, in most 
cases, delayJC performance is comparable to NOJC 
performance and in all cases outperforms the EXT4 case. 

Slowdowns (speedup < 1) and speedups versus the 
slowest CPU frequency are depicted in Figure 7 in the 
second row of graphs (EXT4), the third row of graphs 
(NOJC), and the fourth row of graphs (delayJC). 
Collectively, these graphs confirm performance improves 
noticeably in both the NOJC and delayJC configurations. 
Upon deeper inspection, we monitored the number of 
journal commit operations and found that in all cases, 
delayJC exhibited less journal commits than EXT4. 

The fifth row of graphs from the top in Figure 7 shows 
the delayJC runtime system significantly improves the 
performance across all processor frequencies for 
combinations of threads, file sizes, and records. We 
observe speedups (computed as the ratio of delayJC 
throughput to EXT4 throughput at each frequency 
respectively) up to 3.65x for a combination of 256 threads, 
128 KB file size, and 32 KB record running at 3.3 GHz in 
Figure 7a; up to 2.04x for a combination of 256 threads, 
256 KB file size, and 64 KB record running at 2.6 GHz in 
Figure 7b; and up to 3.47x speedup for a combination of 
256 threads, 512 KB file size, and 128 KB record running 
at 3.3 GHz in Figure 7c. 

The sixth row of graphs from the top in Figure 7 depict 
the average number of threads “not” blocked by the journal 
commit during the threads’ write operations. The EXT4 
configuration shows less nonblocked threads at the higher 
frequency (e.g. 40 nonblocked threads at 3.3GHz versus 
240 nonblocked threads at 1.6Ghz in Figure 7a), and thus 
causes the slowdown to happen as described analytically in 
equation (8) in Section III. The NOJC configuration 
disables the journal commit, so no threads get blocked – 
thus, we remove NOJC from these graphs. For the delayJC 
configuration, the number of non-blocked threads is close 
to the number of threads used in the test. In essence, the 
delayJC runtime system delays the journal commit until all 

(or nearly all) the threads complete their write operations. 
For the IOzone benchmark, the delayJC runtime system 
improves performance by reducing the number of blocked 
threads waiting on the journal commit. The average wait 
time per thread also decreases and thus the delayJC runtime 
system is at least as “reliable” as the EXT4 configuration. 

B. Metarates Results 
Figure 8 compares Metarates results from the default 

EXT4 configuration to the NOJC and delayJC runs. Each 
column of charts refers to a different thread and file number 
scenario. The y-axis on the topmost graphs in each column 
denotes the performance of Metarates. In the NOJC 
configuration where the JC is avoided altogether, higher 
processor frequencies result in higher throughput. The 
metarate critical path does not include a write operation (as 
in the IOzone case). Hence, performance is much more 
sensitive to the journal commit disk access variance. While 
the delayJC configuration consistently outperforms the 
EXT configuration, the delayJC misses some opportunities 
to avoid some slowdowns. 

Slowdowns (speedup < 1) and speedups versus the 
slowest CPU frequency are depicted in Figure 8 in the 
second row of graphs (EXT4), the third row of graphs 
(NOJC), and the fourth row of graphs (delayJC). 
Collectively, these graphs confirm performance improves 
noticeably in the NOJC configuration. While the 
performance of delayJC is always better than EXT4, the 
ability of delayJC to eliminate slowdowns in Metarates is 
mixed. For higher numbers of threads, delayJC 
performance is consistent as processor frequency scales. 
However, for lower numbers of threads, disk noise in the 
journal commit masks some of the gains from the dynamic 
runtime system. To confirm the effects of delayJC, we 
monitored the number of journal commit operations and 
found that in all cases, delayJC exhibited less journal 
commits than EXT4. 

Despite the mixed results in slowdown effectiveness 
versus eliminating the journal commit altogether, delayJC 
is a significant improvement over EXT4. The fifth row of 
graphs from the top in Figure 8 shows the delayJC runtime 
system significantly improves the performance across all 
processor frequencies for combinations of threads and 
number of files. We observe speedups (computed as the 
ratio of delayJC throughput to EXT4 throughput at each 
frequency respectively) up to 2.57x for 4 MPI processes 
with 4 files at 3.1 GHz in Figure 8a; up to 1.82x speedup 
for 16 MPI processes with 16 files at 2.0 GHz in Figure 8b; 
and up to 1.49x for 32 MPI processes with 32 files running 
at 2.9 GHz in Figure 8c.  

The sixth row of graphs from the top in Figure 8 depicts 
the average time that a thread waits before it is serviced by 
the journal commit for both the EXT4 and the delayJC 
configurations. The EXT4 configuration shows longer wait 
times at higher frequencies (e.g. 25 ms wait time at 3.1GHz 
versus 18 ms wait time at 1.7GHz in Figure 8a), and thus 



causes the slowdown to happen as described analytically in 
equation (10) in Section III. The NOJC configuration 
disables the journal commit and has an average wait time of 
zero – thus, we remove NOJC from these graphs. For the 
delayJC configuration, the wait time is significantly 
reduced for the combination of 4 MPI processes and 4 files, 
as shown in 9a. This is because SandyBridge (HDD) has 
four CPU cores, and each of the four MPI processes starts 
roughly at the same time. The delayJC runtime system 
delays the journal commit for 1ms to sufficiently queue all 
the MPI processes for the same journal commit. When the 
number of MPI processes scales from 4 to 16 and 32, as 
shown in 9a, 9b, and 9c (respectively), we observe that the 
average wait time increases. In these configurations, the 
number of MPI threads exceeds the available number of 
cores. In such situations, threads are delayed further due to 
contention and the delayJC runtime adjusts ABT delays to 
compensate. The increase in average wait time among 
threads correlates to drops in overall speedups (longer wait 
time results in less speedup). For example, the average wait 
times for delays around 1ms show speedups of 1.83x–2.57x 
for 4 MPI processes (see Figure 8a). Similarly, the average 
wait times for 12 ms delay show speedups of 1.31x–1.49x 
for 32 MPI processes (see Figure 8c). 

As in the IOzone case, the delayJC configuration 
reduces the average wait time for each thread on the journal 
commit. This means that compared to the EXT4 case, our 
delayJC runtime system reduces the likelihood that that 
(should a fault occur) metadata is not committed to the 
disk. We conclude that our delayJC runtime system is at 
least as reliable as the default Linux kernel EXT4 
configuration. 

RELATED WORK 
Slowdowns at higher frequencies have been observed in 

various contexts including: during MPI communication 
phases [1-3]; during parallel I/O phases [4-6]; on Fourier 
transform codes [7, 8]; on parallel fluid dynamics codes 
[9]; on vehicle scheduling codes [10-12]; on the 
MapReduce Sort benchmark [13], on hard disk drive 
systems [14, 15], on synthetic CPU bound codes [16-18], 
and in memory architectures [19-21]. 

Despite the number and diversity of these experiments, 
none of this work conclusively identifies the root cause of 
the slowdowns. Some leave the investigation to future work 
[25] [3], while others offer unsubstantiated (but reasonable) 
hypotheses citing bus interaction [13, 26, 27], 
synchronization [9] and system- or benchmark-specific 
details [28-30]. 

Based on our findings in the literature and to the best of 
our knowledge, no detailed scientific studies of power-
scalable slowdowns had been conducted prior to our work. 
None of the aforementioned work explore slowdowns in 
much detail nor do they conclusively isolate the root cause 
of observed slowdowns at higher processor frequencies. In 
contrast, we isolate slowdowns, model the performance of 

atomic batch transactions in power-scalable systems, and 
implement a runtime system demonstrating the tradeoffs 
between eliminating slowdown at the cost of reliability. 

LIMITS, CONCLUSIONS, FUTURE 
Our results are limited to the systems and benchmarks 

studied. Broader studies could yield broader conclusions. 
For example, we have measured slowdowns in varMail, 
MySQL, and TPC-C, but application complexity makes 
isolation and modelling more difficult. Additionally, our 
approach only identified a particular cause of slowdown; 
there may be others such as residual slowdowns in 
Metarate. Our modelling efforts focused strictly on 
performance to isolate the cause of slowdowns. Future 
versions would be more useful if they integrated the effects 
of power scaling directly in the models for prediction. 

Overall, we have conclusively shown that in some 
circumstances, higher power and processing speeds can 
cause harm. Though some have noted this previously, none 
have isolated the root cause of such slowdowns. Our results 
indicate that system complexity is introducing unexpected, 
counter-intuitive performance issues that are increasingly 
difficult to isolate due to high system variance, critical path 
complexity, and non-determinism. In future work, we 
would like to isolate other root causes of slowdown. 
Though we were able to improve performance up to 3.65x 
over the EXT4 default configuration, our delayJC approach 
is somewhat static (fixed interval) and would likely be 
improved with additional runtime automated tuning. 
Ultimately, would like to create techniques that enable 
ABTs without conflict with power scalable features. 
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