
An iso-energy-efficient approach to scalable system power-performance optimization

Shuaiwen Song∗, Matthew Grove∗ and Kirk W. Cameron∗
∗SCAPE Laboratory, Virginia Tech

s562673@vt.edu, mat@vt.edu, cameron@vt.edu

Abstract—The power consumption of a large scale system
ultimately limits its performance. Consuming less energy while
preserving performance leads to better system utilization at
scale. The iso-energy-efficiency model was proposed as a
metric and methodology for explaining power and performance
efficiency on scalable systems. For use in practice, we need to
determine what parameters should be modified to maintain
a desired efficiency. Unfortunately, without extension, the iso-
energy-efficiency model cannot be used for this purpose. In this
paper we extend the iso-energy-efficiency model to identify ap-
propriate efficiency values for workload and power scaling on
clusters. We propose the use of “correlation functions” to quan-
titatively explain the isolated and interacting effects of these two
parameters for three representative applications: LINPACK,
row-oriented matrix multiplication, and 3D Fourier transform.
We show quantitatively that the iso-energy-efficiency model
with correlation functions is effective at maintaining efficiency
as system size scales.

Keywords-Iso-energy-efficiency; performance isoefficiency;
system utilization; power aware computing;

I. INTRODUCTION

Since 1992, the performance of supercomputers running
parallel applications increased 10,000-fold while the perfor-
mance per watt improved only 300-fold [1]. Designers of
high performance computing systems have come to realize
that in order to achieve sustained exaflop performance, they
must consider both performance and power consumption at
scale.

The growing interest in addressing the power wall in large
scale systems has led to a number of approaches to improve
cluster efficiencies. The majority of this work [2] [3] [4] [5]
[6] [7] [8] [9] has focused on scheduling power modes to
decrease power consumption while minimizing the impact
of power management on performance.

While such approaches can substantially improve energy
efficiency, they primarily use observational (and in some
cases predictive) data to schedule power states. This ensures
only a qualitative bound on the performance impact of power
management. Fundamentally, the observational approach
provides little insight as to the quantitative effects of power
management on performance.

The iso-energy-efficiency model was recently proposed
[10] to quantitatively model the interactive effects of power
and performance on power-scalable clusters. The basic ap-
proach is to capture the key parameters that affect power
and performance, determine their isolated and interactive

effects on power and performance, and use the model to
predict power and performance for algorithm and machine
combinations. This approach is well-suited for quantitatively
explaining the causal effects of observed power and per-
formance providing an improved understanding of power
management on clusters.

The iso-energy-efficiency model enables users to explain
an observed efficiency. This can help a system designer
identify inefficiencies in either system or algorithm design,
determine a root cause and potentially propose an alternative
solution. It would be extremely useful to analytically explore
the alternative solution space. In other words, it would be
even better if we could automate the process of identifying
the parameter settings necessary to achieve a given effi-
ciency.

Suggesting parameter settings for a given efficiency re-
quires modeling the detailed interactive effects of the pa-
rameter under study at scale. For example, problem size
affects efficiency in an application and system specific way
at scale. Yet, the iso-energy-efficiency model sees problem
size as an isolated, static parameter that can be shown to
have causal effects on a measured efficiency. The current
model lacks the ability to capture the subtle changes in
power and performance behavior that occur as problem size
changes in a scalable system. Nonetheless, given a series of
potential problem sizes for a given application we would like
to additionally model the problem size necessary to maintain
a given efficiency or use in automated power management
tools.

A more sophisticated representation of the iso-energy-
efficiency model would provide the fidelity needed to capture
the effects of system level parameters such as problems
size and processor power modes on energy efficiency. We
could additionally use the approach to suggest models for
parameters that will maintain a given efficiency for an
application and system combination. This is challenging
however since the resulting model must accurately capture
the complicated interacting effects of all the parameters of
the original model.

In the next section we motivate the need to study effi-
ciency with changing problem sizes and CPU power modes
(frequency). Next, we present a summary of the iso-energy-
efficiency model. We then propose the concept and use of
correlation functions to provide detailed models of these
parameters. We use the extended iso-efficiency technique to

0.4

0.5

0.6

0.7

0.8

0.9

1

1 8 15 22 29

En
er
gy
 E
ffi
ci
en
cy

Numer of nodes (1core/node)

Energy efficiency scaling for Matrix Multiplication using
Cannon's Algorithm with various problem sizes

n=2400 n=2800 n=3200

Figure 1. Energy efficiency scaling for Cannon’s algorithm with various
problem size under fixed frequency.

demonstrate how problem size (and processor power modes)
can be managed to maintain user-specified energy efficiency.

II. MOTIVATION

A. Problem size

To illustrate the effect of increasing problem size on
system energy efficiency, we ran a simple experiment. For
three different sizes of matrix (problem sizes) we applied
Cannon’s algorithm using an increasing number of nodes
(system size). We measured the energy efficiency of the
system.

We observe from Figure 1 that overall energy efficiency
goes down when increasing system size. However, the en-
ergy efficiency improves when increasing the problem size.
For example, using 4 nodes with a problem size of 2800
has the same system energy efficiency as 32 nodes with
3200. The graph shows that one potential way to improve
or maintain system energy efficiency is to simultaneously
increase both system and problem size. Although this is
the case for Cannon’s algorithm we want to know whether
problem size scaling is a generally applicable technique for
maintaining system energy efficiency. It may be the case that
scaling problem size has a negative effect, or no effect, on
some applications.

B. Processor power modes (CPU frequency)

To illustrate the effect of changing frequency on system
energy efficiency we performed another experiment. We
used Fourier transform with a fixed problem size on an
increasing number of nodes (system size) while varying
the CPU frequency on all nodes. We measured the energy
efficiency of the system.

Figure 2 shows that using 2.4 GHz improves the energy
efficiency by an average of 3.2% compared to 2.8GHz. This
shows that one potential way to improve, or maintain system
energy efficiency is to scale the CPU frequency. Similarly
to the problem size scaling technique, we want to know
what the relationship is between CPU frequency scaling

!"#

!"##

!"$

!"$#

!"%

!"%#

!"&

!"&#

!"'

!"'#

(

() * & ($ +) $*

N
or
m
al
iz
ed
 V
al
ue
 (%
)

Number of Nodes (1core/node)

Normalized Energy Efficiency for FT running on under different

frequencies

)"&,-./

)"*,-./

Figure 2. Energy efficiency scaling for Fourier transform under two
frequencies.

and system energy efficiency. It may be the case that CPU
frequency scaling is a generally applicable technique for
maintaining system energy efficiency. However, for some
applications it may be the case that varying the frequency
does not result in energy reduction and will not improve
system energy efficiency. Whether we can achieve energy
reduction by scaling the CPU frequency heavily depends
on the execution pattern of the application and available
frequency scaling range on the system.

III. RELATED WORK

A. Performance modeling, DVFS and energy modeling

Based on the original Amdahl’s law [11], speedup tends
to saturate or grows sub-linearly when number of processors
increase. Also, higher speedup or performance efficiency
will increase while increasing the computational problem
size (weak scaling). So Grama et al [12] proposed the
performance isoefficiency metric to relate problem size with
the number of processors required to maintain speedup. Per-
formance isoefficiency focuses on performance scalability
and modeling but ignores both performance and system-wide
energy effects of power management.

In addition to modeling performance, other work focuses
on applying various DVFS scheduling strategies to reduce
energy consumption for both HPC and data center use. For
HPC, Mishra et al [13] proposed a two-tier feedback con-
trol coordinated power management in chip-multiprocessors
(CMP) by applying workload based DVFS to sectional core
islands in order to save CMPs’ energy consumption. [5] [7]
[9] also use DVFS control based various strategies and pre-
diction schemes to gain significant energy savings. Freeh et
al [6] studied energy-performance tradeoffs for MPI applica-
tions. Curtis et al [14] combines both DVFS and concurrency
throttling to form a multi-dimensional power saving scheme
for CMPs. DVFS control based on system load has also been
combined with smart scheduling policies to turn off the idle
nodes in order to reduce overall consumption in data centers
[15]. However, none of the approaches above, quantitatively

bound the impact of power management on performance and
predict the combined effects of performance and power on
scalable systems.

Energy modeling has been used on both the architecture
and system level. Wattch [16], SimplePower [17], SoftWatt
[18], SimpleScalar [19], and IPP [20] are all architecture
level simulations. All of these approaches are in the context
of computer architecture as opposed to computer systems
that would include major system components and on-off chip
power behaviors of applications. These simulators are often
execution-driven using compiled code for instrumentation;
whereas our model is strictly analytical and more scalable
for large systems. At the system level, Ge and Cameron [21]
proposed a power-aware speedup model as a generalization
of Amdahl’s Law for power and accurately captures some
of the effects of energy on speedup. However, it does
not provide the root cause for poor energy-performance
scalability and strategies to maintain high-energy efficiency.
Ding et al [22] proposed a circuit-level simulation model to
analyze power-performance tradeoffs; however, this model
focuses on circuit level design which makes it less practical
for modeling large scale systems. Jiang et al [23] proposed
a high level Energy Resource Efficiency metric which high-
lighted the various energy-performance tradeoffs but does
not specifically identify reasons for poor energy scalability.

B. The Iso-Energy-Efficiency model (I-E-E model)

In this section we briefly review our I-E-E model and
explain how it is used.

We developed the I-E-E model to address two key points.
Firstly predict total energy consumption of large-scale sys-
tems and secondly model how energy efficiency is affected
by altering system parameters such as CPU frequency,
problem size, node count and interconnect. For a complete
list of parameters used in the model please see Table I.

We define E1 as the total energy consumption of sequen-
tial execution on one processor and Ep as the total energy
consumption of parallel execution for a given application on
p parallel processors. Let Eo represent the additional energy
overhead required for parallel execution and running extra
system components. So we can define the general form of
I-E-E model as:

θ = EE =
E1

Ep
=

E1

E1 + Eo
=

1

1 + Eo
E1

=
1

(1 + αToPtotal−idle+Wcotc∆Pc+Wmotm∆Pm
αT1Ptotal−idle+Wctc∆Pc+Wmtm∆Pm

)

(1)

Where: T1 = (Wctc + Wmtm) and To = (Wcotc + Wmotm +∑p

i=1
Tneti)(1 ≤ i ≤ p)

*

* For simplicity,
∑p

i=1
Tneti can be estimated by Mtmsg +BtByte. For

more complicated communication patterns, communication models such as Pairwise

exchange/Hockney [28], LogP [29], LogGP [30], PLogP [31], BSP [32], etc, can be

used to replace
∑p

i=1
Tneti according to specific parallel algorithm.

Table I
SUMMARY OF PARAMETERS USED IN THIS PAPER.

Parameters Machine dependent parameters
Wc Total on-chip computation workload †
Wm Total off-chip memory access workload †
Wco Total parallel computation overhead
Wmo Total number of memory access overhead in parallelization
M Total number of messages packaged in parallelization ?
B Total number of bytes transmitted ?
p Number of nodes (typically one core, single processor)
N Problem size or total amount of work (in instructions or

computations)
α Corrector factor including components such as overlap among

computation, memory access and network transmission, ad-
ditional cost by code scaling, etc.

To Total overhead time due to parallelism
T1 Total sequential execution time of an application running on

a single processor
Parameters Application dependent parameters
Time related
tc

CPIon
f [24] . Average time per on-chip computation in-

struction (including on-chip caches and registers) †
tm Average memory access latency ⊕
tmsg Average start up time to send a message �
tbyte Average time of transmitting a 8-bits word �
tIO Total IO access time Υ

Power related
Pc−on Average CPU power in running state Ω

Pc−idle Average CPU power in idle state Ω

∆Pc Pc−on − Pc−idle Ω

Pm−on Average memory power in running state Ω

Pm−idle Average memory power in idle state Ω

∆Pm Pm−on − Pm−idle Ω

PIO−on Average IO device power in running state Ω

PIO−idle Average IO device power in idle state Ω

∆PIO PIO−on − PIO−idle Ω

Pother Average sum of other devices’ power such as motherboard,
System/CPU fans, NIC, etc. Ω

Ptotal−idle Average system power on idle state Ω

f The clock frequency in clock cycles per second
θ Energy efficiency or user desired energy efficiency. For N

scaling, 0 < θ ≤ 1; for f scaling case, θ > 0 and possibly
larger than 1 due to normalized to lowest frequency on one
processor

Parameters measured by PowerScale using: Perfmomn+libpfm4.0 †; TAU [25] ?;
LMbench [26] ⊕; MPPTest [27] �; PowerPack 3.0 [4] Ω; /proc/stat [20] Υ.

For the detailed mathematical derivation, validations, and
accuracy analysis of (1), please refer to [10]. In Section
V, both problem size and frequency scaling approaches
have their own derived form from (1) to show different
perspectives on improving energy efficiency.

IV. METHODOLOGY

In this paper we are using the I-E-E model to show the
affects of problem size or frequency scaling on maintaining
or improving system-level energy efficiency. To do this we
need to solve two correlation functions when system scales:

N = F (p, θ), under fixed processor frequencyf. (2)

f = F (p, θ), under fixed problem size N. (3)

F (p, θ) in (2) and (3) is a function of p with user desired
energy efficiency θ as a constant. Using the model (1),

!

!

Figure 3. Runtime monitoring tool PowerScale software components and
data flow diagram.

we find what the effect (improve, degrade or no effect)
on system energy efficiency is when scaling problem size
or processor frequency while p scales up for a specific
application.

When you know effects of problem size or frequency
scaling on energy efficiency for a specific application, we
then find valid N or f values to maintain or improve energy
efficiency θ under specific p. In the following case studies we
show how to use (1)(2)(3) to evaluate the energy efficiency
of several commonly used parallel applications.

A. Software

Precisely measuring the machine and application param-
eters such as total on-chip computation workload is the key
to building highly accurate model. For a complete list of
dependent parameters see Table I. Measuring large numbers
of parameters by hand becomes labor intensive and error
prone. To solve this problem we implemented a program
called PowerScale to automate the process.

Figure 3 shows our semi-automatic runtime monitoring
tool PowerScale and its major software components. Table I
in Section III-B is annotated to show parameters automati-
cally measured by PowerScale. PowerScale is architecture
independent because it will map the architecture specific
hardware counters to the correct model parameters. Hard-
ware counters are able to capture effects such as increased
memory controller contention caused by a different number
CPU cores.

B. The estimating procedure for N and f

As explained in earlier we define N as problem size and
f as CPU frequency. In order to maintain system energy
efficiency at the user desired level we can estimate N and
f for a system size (p).

Figure 4 shows pseudo code for estimating problem size
N in order to maintain energy efficiency while p scales up,

01: Collect and process the runtime monitoring data and
machine/application dependent parameters used for
model.

02: Plug the parameters into the I-E-E model.
03: Pre-define the value of θ (it can be a loop with a

group of interested θ values)
04: for p=1 to (max range of p user wants to evaluate) do
05: Try to solve N=F(p,θ) under fixed frequency
06: if !N or N or out of range then
07: Give value -1 to data structure *A [p]

and return to the for loop to continue
08: else *A [p]=1 and *(A [p]-> next)=N
09: end if
10: end for
11: Find the problem sizes with *A [p]=1 and output their

*(A [p]->next) with corresponding p

Figure 4. Pseudo code for estimating N in order to maintain energy
efficiency.

described in (2). (3) can use a similar method to estimate
f . However, finding a frequency level to maintain energy
efficiency while system scales is sometimes impractical due
to the limitations of DVFS [2]. More discussion about the
frequency scaling approach can be found in Section V-D.

V. CASE STUDIES AND DISCUSSION

A. Experimental setup

Table II shows the configurations of two power-aware
clusters: SystemG and Dori. Most of the experiments and
modeling were conducted on SystemG. Some comparison
tests in Section V-D are done on Dori.

Table II
SYSTEM CONFIGURATION FOR SystemG AND Dori CLUSTERS.

Cluster SystemG Dori
System size (nodes) 325 8

Processor 2 x Quad-core Xeon 2 x Dual-core Opteron
Memory 8GB 6GB
L1 cache 32KB 64KB
L2 cache 6MB 1MB

Interconnection 40Gbytes/s InfiniBand 1Gbytes/s Ethernet
CPU frequencies 2.8, 2.4 GHz 1.8, 1.6, 1.4, 1.2, 1.0 GHz

B. Problem size scaling

For scaling problem size N to achieve constant energy
efficiency, we derive from the general form of the I-E-E
model (1):

EE(N, p) = θ =
E1,N

Ep,N
(4)

(where 0 < θ ≤ 1, 0 < N ≤ total allowable memory for p processors, E1,N

and Ep,N are the system energy consumption for running on one and p processors

with problem size N . For simplicity, CPU has fixed frequency.)

In this subsection, we will apply (4) to three parallel
applications with different runtime execution patterns and

discuss how to solve (2) from Section IV in order to
estimate problem size N for specific parallelism p to main-
tain system-wide energy efficiency θ under fixed frequency.
Frequency f is fixed at 2.8 GHz. For the simplicity of
modeling network related parameters M and B, we assume
a one port communication model and bi-directional commu-
nication links. The applications used are:

1) High Performance LINPACK (CPU and Memory in-
tensive with non-ignorable communication);

2) Simple row-oriented matrix multiplication (high com-
putation to communication ratio with a large memory
footprint);

3) and 3D Fourier transform (communication intensive).
We use these applications to categorize common parallel

applications based on their individual execution pattern
and overall increasing rate of N for maintaining energy
efficiency while system scales up.

1) Case A - High Performance LINPACK (HPL) :
High Performance LINPACK is widely used in the HPC
community to measure peak system performance . It is
also the sole performance benchmark used by the TOP 500
list [33] to rank the worlds fastest supercomputers. HPL is
a portable benchmark that solves a (random) dense linear
system (Ax = b) in double precision (64 bits) arithmetic
on distributed-memory computers. The problem size (N)
specifies the order of matrix A (therefore A has N ∗ N
elements). In order to solve x, we first need to apply
LU factorization algorithm to the coefficient matrix [A, b]
(shown in Figure 5) and then use backward substitution
method to achieve x. Figure 5 shows that the coefficient
matrix has been logically divided into block size NB ∗NB
(computational granularity) and then distributed on a P ∗Q
(here 2 ∗ 4) grid of processes for LU factorization. HPL
system configuration has several parameters affecting over-
all maximum performance in terms of Gflops, including
problem size N , block size NB, rows of process grid P
and columns of process grid Q. Compared to these four
parameters, other HPL parameters are considered to have
a trivial impact on maximum performance [34]. In our
modeling process shown in Table III, NB, P and Q are
involved in the network performance related parameters M
and B. Since the focus of this case is to show how scaling
problem size N to maintain or improve system-wide energy
efficiency instead of performance maximization, we fix the
value of NB to 32 and set P and Q approximately equal,
with Q slightly larger than P according to p: P ∗Q = p and
P ≤ Q. Work such as [34] discuss how to finely tune NB,
P and Q to maximize the performance benefit for both data
distribution and parallel computation. Detailed discussion of
these three parameters is beyond the scope of this paper.

Correlation (2) can help us estimate the value of N
according to the number of processes p and desired energy
efficiency under fixed frequency. Users can preset θ based
on (4) function under an energy efficiency upper bound for

!

"!

#!

"! #! $! %!

!"

#"

!$#%"&$'"()*+",-".),/01101"

2!3"4,0--*/*056"786)*9"

:";,(*/8;;<".,)6*,50+"=>$=>"?;,/@"

"

A*16)*?B60+",5"2!4"/;B160)1"

Figure 5. Data distribution for HPL on the logical Process Grid.

a specific number of p. In (4), the memory upper bound we
set for N in HPL is around 80% of total parallel system
memory to avoid memory swapping and TLB misses.

Table III
MACHINE AND APPLICATION DEPENDENT PARAMETER ESTIMATION

FOR HPL.

Machine Estimation
tc

4.31
f ∗ 10−10

tm 1.12 ∗ 10−7

tmsg 2.53 ∗ 10−5

tByte 1.82 ∗ 10−8

P(total−idle) 27.68 ∗ fγ †
∆Pc 2.19 ∗ fγ

∆Pm 1.56 ∗ fγ

Application Estimation
α 0.989

Wc 107927 ∗N2

Wm 14.6 ∗N2

Wco 3600 ∗ logp2N
2

Wmo (25.4 ∗N2 ∗ logp2)/p

M N ∗ ((NB+1)∗ logp2 +p)/NB

B 16 ∗N2/p1/2

† For SystemG we fix γ to 2.

Table III shows the machine and application dependent
parameters estimated by PowerScale and manual analysis of
HPL. Based on the parameter estimation in Table III and
(1)(4), we are able to build the I-E-E model for HPL using
a fixed frequency of 2.8GHz:

EEFHPL(N, p) =

214.6 ∗ 105To + 0.98 ∗ logp2 N2 + 3.48 ∗N2 logp2 /p

214.6 ∗ 105T1 + 30.49N2

(5)

(Where T1 = 1.82 ∗ 10−5N2 and To = 5.54 ∗ 10−7 logp2 N
2 + 28.4 ∗

10−7 logp2 /p+ 7.9 ∗ 10−7 ∗N(33 logp2 +p) + 2.9 ∗ 10−7N2/p1/2)

!

!

Energy Efficiency

Figure 6. 3D illustration of energy efficiency scaling for HPL while scaling
p (from 4 to 128) and problem size N .

!

!

!

!

Figure 7. Illustration for ROMM.

We use (5) to plot energy efficiency scaling for HPL under
fixed CPU frequency shown in Figure 6.

Figure 6 shows that when we scale up the system size
p, the overall system energy efficiency degrades under fixed
frequency. After following the procedure in Section IV-B, we
discover that there is no possible rate to scale N in order
to keep up with increasing p to maintain energy efficiency
θ. In other words, overall energy efficiency does not react
to more workload while system scales up, so the problem
size scaling approach for improving energy efficiency is not
feasible for HPL. This observation also shows that, for HPL,
energy is more efficiently used for parallel execution if we
increase problem size to the upper bound with the fixed p
since energy efficiency stays approximately constant while
N scales. HPL is a typical weak scaling case stressing both
CPU and memory, and its energy efficiency pattern using
scaling N will be categorized in Section V-C.

2) Case B - Row-Oriented Matrix Multiplication
(ROMM) : In this case study, we demonstrate how to use our
I-E-E model to estimate N for ROMM in order to maintain
constant system-wide energy efficiency. ROMM has a high
computation to communication ratio with a large memory
footprint. To simplify our analysis, we assume that A, B and
C are all n∗n matrices and the total number of computations
is N = 2n3 (including both additions and multiplications).
Figure 7 shows each process is responsible for computing
n/p rows of C and needs to refer to n/p rows of A and
every element of B.

Table IV shows the machine and application dependent
parameters for SystemG under a fixed frequency of 2.8GHz:

Table IV
MACHINE AND APPLICATION DEPENDENT VECTORS ESTIMATION FOR

ROMM.

Machine Estimation
tc

3.64
f ∗ 10−10

tm 1.12 ∗ 10−7

tmsg 2.53 ∗ 10−5

tByte 1.82 ∗ 10−8

P(total−idle) 27.68 ∗ f2

∆Pc 1.43 ∗ f2

∆Pm 0.99 ∗ f2

Application Estimation
α 0.854

Wc 26.1 ∗N
Wm 4.35 ∗ 10−2N

Wco 2.5 ∗ 10−3Np

Wmo 6.17 ∗ 10−3 ∗ N
(p−1)

M 2.53 ∗ 10−5 ∗ (p− 1)N
2
3

B (p− 1)(1 +N
2
3 + 2

p ∗N
2
3)

!

!

!!!!!

!!

!

!

!

!

!

!

!

Energy Efficiency

N

Figure 8. 3D demonstration of energy efficiency trend while scaling
number of p and problem size N on SystemG.

We then use Table IV and (1)(4) to build the I-E-E model:

EEFROMM (N, p)

=
185.3To + 3.64 ∗ 10−11Np+ 50.53 ∗ 10−10 ∗ N

p−1

185.3T1 + 4.17 ∗ 10−7N

EEROMM (N, p) =
1

1 + EEFROMM (N, p)

(6)

(Where To = 0.325∗10−11Np+6.479∗10−10∗ N
p−1 +2.53∗10−5∗(p−1)∗

N2/3+1.82∗10−8∗(p−1)(1+N2/3+ 2
p ∗N

2/3 and T1 = 3.8498∗10−8N)

Figure 8 is the rendered image of (6). We now use the
pseudo code from Section IV-B to solve I-E-E correlation
NROMM = F (p, θ). For example, we set θ = 0.85 and
θ = 0.98 with solutions:
θ = 0.85 = EEROMM (N, p) = EEROMM (1.3824 ∗

1010, 64) = EEROMM (1.1128 ∗ 1011, 128)
θ = 0.98 = EEROMM (1.3824 ∗ 1010, 8) =
EEROMM (1.8432 ∗ 1010, 16) = EEROMM (3.093 ∗
1010, 32)

Using (6) we can approximately estimate the iso-energy-

efficiency relationship between N and p: NROMM =
f
′
(θ)φ(logp), where f

′
(θ) is a function of θ and φ(x) is

the set of all functions that have the same growth rate as x.
From the equation, we can infer that the total problem size N
needs to grow with the number of processors at an overall
rate of φ(logp) in order to maintain system-wide desired
energy efficiency θ(N > 0). So ROMM’s energy efficiency
scalability is less than Embarrassingly Parallel which is an
approximately ideal case for iso-energy-efficiency but better
than linear growth applications. This shows that the problem
size scaling approach can be used to help maintain energy
efficiency for ROMM. For performance efficiency analysis,
we use Michael J. Quinn’s [35] performance isoefficiency
relation to evaluate ROMM. We find that in order to maintain
a constant level of performance efficiency, memory utiliza-
tion per processor needs to increase as φ(p). We conclude
that in general, system energy efficiency is a combination
of the effects of power and performance and so may not
be evaluated by only using basic performance efficiency
analysis (φ(logp) 6= φ(p)).

3) Case C - 3D Fourier Transform (3D-FT) : 3D-FT
is one of the eight benchmark suites in the NAS Parallel
Benchmark which uses a divide-and-conquer strategy to
evaluate a 3D partial differential equation. As a communi-
cation intensive application, 3D-FT is composed of several
computation and communication phases, and stresses CPU,
memory and network during execution. Among all the
communication calls, all-to-all communication dominates
the overhead. We use PowerScale to measure both machine
and application dependent parameters, shown in Table V.

Table V
MACHINE AND APPLICATION DEPENDENT VECTORS ESTIMATION FOR

3D-FT.

Machine Estimation
tc

6.41
f ∗ 10−10

tm 1.12 ∗ 10−7

tmsg 2.53 ∗ 10−5

tByte 1.82 ∗ 10−8

P(total−idle) 27.68 ∗ f2

∆Pc 3.4 ∗ f2

∆Pm 0.76 ∗ f2

Application Estimation
α 0.86

Wc 1.06 ∗ 104N

Wm 9.49N

Wco 4.46 ∗ 103 ∗Nlogp2
Wmo −0.73 ∗Nlogp2
M 22

B 4N

4
(log

p
2
−1)

We can calculate energy efficiency for 3D-FT on SystemG:

EE3D−FT (N, p) =
1

1 +
1.97 logp2 +2.8p(p−1)(11500

N + 0.376

4
(log

p
2
−2)

)

226.56

!

!

Energy Efficiency

N

Figure 9. Illustration of 3D-FT’s energy efficiency scaling with frequency
fixed to 2.8 GHz.

(7)

According to (7) and Section IV-B we can solve the
correlation N3D−FT = F (p, θ) while p and N scale
simultaneously. For example, we find that θ = 0.9 when
p = 8 and N = 0.8∗106. Looking at the graph, 90% energy
efficiency is a reasonable target θ for this case. We need to
find N when p scales to 16 and above. We can estimate the
workload as:
θ = 0.9 = EE3D−FT (0.42∗106, 8) = EE3D−FT (6.185∗

106, 16)
In the example above, users can easily find that there is

no valid N value that will keep 90% system-wide energy
efficiency when p scales to 32 and above. However, users can
still choose a value for N that is close to 90% by calculating
max(θ) when p is fixed when running the application. By
using (7) and (4), we can estimate correlation between N
and p under fixed f for 3D-FT on SystemG: N3D−FT =

f
′
(θ)φ(p2

logp2
). We can infer that N needs to grow with p

at an overall rate of φ(p2

logp2
) in order to maintain system-

wide desired energy efficiency (N > 0). 3D-FT has a larger
communication to computation ratio compared to ROMM,
thus energy efficiency decreases faster while p scales up due
to faster growth of Ep caused by communication overhead.
Overall energy efficiency improvement reacts to increasing
problem size faster for 3D-FT than ROMM, especially for
larger system size (for instance, when p = 128). The
problem size scaling approach can be effectively used for
3D-FT to reduce the negative impact on energy efficiency
caused by increasing p.

C. Discussion and Categorization

Figure 10 shows classification of several applications with
individual N ’s growth rate. Based on the case studies, we
can categorize parallel applications by how they are affected
by the problem size scaling approach:

!

!

Figure 10. Categories of applications based on computation to communi-
cation ratio.

1) Purely computation intensive with minimal communi-
cation (ideal case). These applications do not react to
increasing problem size to maintain energy efficiency
while scaling up p. Neither p nor N scaling will
significantly improve or degrade the overall energy
efficiency. For example Embarrassingly Parallel.

2) Both computation and non-negligible communication.
Applications such as ROMM, Conjugate Gradient
(CG) and Multigrid (MG) from NPB belong in this
category. This type of application cannot maintain
system energy efficiency as well as the ideal case. The
problem size scaling approach is able to help these
applications improve their overall energy efficiency.

3) Communication intensive. Both performance and en-
ergy efficiency do not scale well. 3D-FT belongs in
this category. The problem size scaling approach is
able to help these applications improve their overall
energy efficiency.

4) Both computation and memory intensive with non-
negligible communication. Their system-wide energy
efficiency is not sensitive to changing workload. Un-
like the ideal case, increasing system size will cause
energy efficiency degradation. However, scaling work-
load will not help improve energy efficiency while p
scales. Examples such as HPL and LU from NPB.

D. Frequency scaling

Frequency scaling can be another effective approach
to maintain or improve overall system energy efficiency
while system size scales. For a DVFS-based power aware
cluster, we assume each of its compute nodes has s
power/performance modes or processor frequencies avail-
able { f1, f2, f3, , fs } satisfying fmin = f1 < f2 < ... <
fs = fmax. For the simplicity of discussion, problem size
N is fixed in this section. We extend the general model
described in (1):

EE(f, p) = θ =
E1,fmin

Ep,fδ
(8)

(Where 1 ≤ δ ≤ s. We denote total energy consumption for application with fixed

workload running on one processor with the minimum frequency as E1,fmin
and

on p processors with frequency f as Ep,fδ)

While problem size N can scale continuously, the number
of CPU frequencies available are typically very limited and
non-congtiguous, so it is not practical to use the method
in Section IV-B to find f in order to reach specific desired

!

!

Energy Efficiency

Figure 11. Illustration of 3D-FT under fixed problem size N = 1.15∗106
on SystemG while p scales up.

!

!

"

"#$

"#%

"#&

"#'

(

(#$

(#%

(#' (#& (#% (#$ (

N
or
m
al
iz
ed
 V
al
ue
 (%
)

Frequency (GHz)

)*+,- ./*01-

Figure 12. Energy and Delay of 3D-FT running on Dori cluster with five
available frequencies. Results are normalized with 1.8 GHz situation.

θ. We focus on studying how to use frequency scaling to
improve energy efficiency instead. In this subsection, we
use 3D-FT and HPL as case study candidates.

1) Studies: Frequency scaling approach on 3D-FT and
HPL : Reusing the parameters from Table V, we model
3D-FT under fixed problem size N = 1.15 ∗ 106, shown
in Figure 11. Figure 11 shows that for fixed problem size,
scaling down the frequency (from 2.8GHz to 2.4 GHz) will
save total energy consumption (normalized to E1,fmin) and
improve overall system energy efficiency. However, scaling
frequency does not improve energy efficiency significantly.
This is because 3D-FT is a communication intensive ap-
plication and the effect of frequency change on on-chip
workload is diminishing while p scales up. Also, there are
only two available frequency levels supported on our test
cluster SystemG. This limits the possibility of higher energy
efficiency improvement by further scaling down frequency.
In order to investigate whether continuing to lower the CPU
frequency can further reduce the total energy consumption
we also ran 3D-FT on another power-aware cluster Dori that
has more frequency levels (see Table II).

Figure 12 shows that the pattern of energy reduction
continued on our second cluster as frequency was lowered
until 1.2 Ghz. Between 1.2 and 1Ghz, energy consumption
increases because the performance penalty of lowering fre-
quency offsets the benefit of lower CPU power. For the HPC

!

!

Energy Efficiency

Figure 13. Illustration of HPL under fixed problem size N=10000 on
SystemG while p scales up.

community, the balancing point in this context is the system
configuration that maximizes energy efficiency. Using (3),
users can know more about how to scale frequency to
achieve better energy efficiency.

For the applications that are not dominated by commu-
nication such as HPL, scaling to higher frequency may
improve the overall energy efficiency. Using Table III and
(3), we model fHPL = F (p, θ) under fixed workload.
Figure 13 shows that HPL exhibits different behavior than
the 3D-FT case. Using a higher frequency for processors
improves the total energy efficiency. The graph area that
is above 1.0 energy efficiency is because we use E1,fmin to
normalize all the energy efficiency results. For a computation
and memory intensive benchmark such as HPL, higher
frequency will help achieve better performance and less
latency. Also, unlike 3D-FT, the frequency impact on on-
chip workload will not dramatically diminish when system
scales up due to its higher computation to communication
ratio. Since total system energy consumption E is a sum of
products of average power and delay over all the computing
nodes E =

∑#nodes
1 Power ∗Delay, performance benefits

overcome the increased average power consumption caused
by higher frequency and result in a reduced total energy
consumption and improved system-wide energy efficiency.

In addition to applying an appropriate frequency to all
the operating processors to save energy for a communication
intensive case shown in Figure 11, further energy reduction
is possible at the application level by applying DVFS to
“communication slack”. Application level optimizations are
beyond the scope of this work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have modeled the effects on energy
efficiency of scaling problem size and CPU frequency. We
proposed two correlation functions derived from our I-E-E
model and have shown how they can accurately estimate
overall energy efficiency. In this section we compare and
contrast how effective the approaches are for improving
system energy efficiency. Finally we outline our future work.

A. Problem size scaling

We have proposed a methodology that is able to identify
whether problem scaling is a feasible technique to help
applications maintain or improve system-wide energy effi-
ciency while system size scales up.

The correlation function N = F (p, θ) can be used to
estimate valid problem size N according for specific system
size p under fixed user level desired energy efficiency value
θ in order to maintain efficiency. Using 3D-FT, HPL and
ROMM as examples, we have shown how to calculate
application specific rates for increasing N to keep constant
energy efficiency. Finally, we classified parallel applications
into four categories based on how effective problem size
scaling is for maintaining or improving energy efficiency.

We have shown that the problem size scaling technique
can be used to effectively improve energy efficiency for
some specific applications. In the HPC community, using
this approach can help users more effectively use energy, al-
lowing them to solve bigger problems with limited resources.

B. Frequency scaling

We have also shown that frequency scaling can be used
as an effective tool to further improve energy efficiency.

Using HPL and 3D-FT as examples we show how to use
the I-E-E model and f = F (p, θ) to locate the optimal
frequency level in order to maximize total system energy
reduction and energy efficiency. We also discussed the
balance of improving energy efficiency whilst limiting the
performance impact.

Frequency scaling is used to help users reduce total
energy consumption in order to improve energy efficiency. In
contrast to problem size scaling, while this technique does
not allow for greatly improved system utilization, it does
reduce power consumption, which will reduce costs.

C. Summary

Table VI presents the Pros and Cons for the problem size
and frequency scaling approaches:

D. Future work

Currently, we have to manually analyze an application to
ensure the prediction accuracy of the model. To reduce the
amount of work required to apply the model we want to
make PowerScale fully automatic. Another way would be
to simplify the model at the expense of some flexibility and
accuracy.

We would like to explore using I-E-E and the techniques
in this paper to model the energy efficiency of heterogeneous
architectures such as a GPGPU cluster. We are also inter-
ested in modeling energy consumption for the Intel Nehalem
architecture due to its automatic power bounded DVFS and
overclocking ’Turbo Boost’ functionality.

A limitation of the current model is that it does not work
for imbalanced parallel workloads. In the future we will

Table VI
PROS AND CONS FOR WORKLOAD AND FREQUENCY SCALING

APPROACHES FOR IMPROVING OVERALL SYSTEM-WIDE ENERGY
EFFICIENCY.

Scaling Pros Cons

f

1) From the view point
of saving total energy in
order to improve energy
efficiency.
2) Easy to apply.

1) Limited levels of
frequencies available to
scale. This also limits
the rate of system energy
efficiency improvement.
2) Encounter a certain
degree of performance
penalty.

N

1) From the view point
of more efficiently utilize
energy to complete more
workload.
2) Has a bigger range to
scale and very flexible.

1) Does not fit for the
applications that have very
limited input data range
or underlying systems that
have very small memory.

extend the model for this scenario, this will require a more
sophisticated methodology.

REFERENCES

[1] W. Feng and K. W. Cameron, ”The Green500 List: Encouraging
Sustainable Supercomputing,” Computer, vol. 40, pp. 50 - 55 Dec.
2007.

[2] J. Li and J. F. Martinez, ”Dynamic power-performance adaptation of
parallel computation on chip multiprocessors,” in The Twelfth Inter-
national Symposium on High-Performance Computer Architecture,
2006, pp. 77-87.

[3] S. Song, R. Ge, X. Feng, and K. W. Cameron, ”Energy Profiling and
Analysis of the HPC Challenge Benchmarks,” International Journal
of High Performance Computing Applications, vol. 23, pp. 265-276,
2009.

[4] R. Ge, X. Feng, S. Song, H. Chang, D. Li and K. W. Cameron, ”Pow-
erPack: Energy Profiling and Analysis of High-Performance Systems
and Applications,” IEEE Transactions on Parallel and Distributed
Systems, vol. 99, pp. 658-671, 2009.

[5] V. W. Freeh and D. K. Lowenthal, ”Using multiple energy gears
in MPI programs on a power-scalable cluster,” presented at the
Proceedings of the tenth ACM SIGPLAN symposium on Principles
and practice of parallel programming, Chicago, IL, USA, 2005.

[6] V. W. Freeh, F. Pan, N. Kappiah, D. K. Lowenthal, and R.
Springer, ”Exploring the Energy-Time Tradeoff in MPI Programs on
a Power-Scalable Cluster,” presented at the Proceedings of the 19th
IEEE International Parallel and Distributed Processing Symposium
(IPDPS’05) - Papers - Volume 01, 2005.

[7] R. Ge, X. Feng, and K. W. Cameron, ”Performance-constrained
Distributed DVS Scheduling for Scientific Applications on Power-
aware Clusters,” presented at the Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, 2005.

[8] R. Ge, X. Feng, and K. W. Cameron, ”Improvement of Power-
Performance Efficiency for High-End Computing,” presented at the
Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05) - Workshop 11 - Volume 12,
2005.

[9] R. Ge, X. Feng, W.-c. Feng, and K. W. Cameron, ”CPU MISER: A
Performance-Directed, Run-Time System for Power-Aware Clusters,”
in International Conference on Parallel Processing, ICPP, Xi’an,
China, 2007, p. 18.

[10] S. Song, C.-Y. Su, R. Ge, A. Vishnu, and K. W. Cameron, ”Iso-
energy-efficiency: An approach to power-constrained parallel compu-
tation,” in accepted to appear in 25th IEEE International Parallel &
Distributed Processing Symposium, Anchorage (Alaska) USA, 2011.

[11] G. Amdahl, ”Validity of the Single Processor Approach to Achieving
Large-Scale Computing Capabilities,” in AFIPS Conference Proceed-
ings 1967, pp. 483-485.

[12] A. Y. Grama, A. Gupta, and V. Kumar, ”Isoefficiency: measuring the
scalability of parallel algorithms and architectures,” in Multiprocessor
performance measurement and evaluation, 1995, pp. 103-112.

[13] A. K. Mishra, S. Srikantaiah, M. Kandemir, and C. R. Das, ”CPM in
CMPs: Coordinated Power Management in Chip-Multiprocessors,” in
Supercomputing 2010, SC10, New Orleans, Louisiana, USA, NOV,
2010.

[14] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R.
d. Supinski, and M. Schulz, ”Prediction models for multi-dimensional
power-performance optimization on many iso-energy-efficiency ,”
in Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, New York, NY,US, 2008,
pp. 250-259.

[15] . Goiri, J. Fit, F. Juli, R. Nou, J. Berral, J. Guitart and J. Torres,
”Multifaceted Resource Management for Dealing with Heterogeneous
Workloads in Virtualized Data Centers”, in 11th IEEE/ACM Interna-
tional Conference on Grid Computing (GRID), 25-28 Oct. 2010.

[16] D. Brooks, V. Tiwari, and M. Martonosi, ”Wattch: a framework for
architectural-level power analysis and optimizations,” in ISCA ’00:
Proceedings of the 27th annual international symposium on Computer
architecture, New York, NY, USA, 2000, pp. 83-94.

[17] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, ”The design
and use of simplepower: A cycle-accurate energy estimation tool,” pp.
340-345, 2000.

[18] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan,
and M. Kandemir, ”Using Complete Machine Simulation for Soft-
ware Power Estimation: The SoftWatt Approach,” in Proceedings
of Eighth International Symposium on High-Performance Computer
Architecture (HPCA’02), Boston, Massachusettes, 2002.

[19] D. C. Burger and T. M. Austin, ”The SimpleScalar Toolset, Version
2.0,” Computer Architecture News, vol. 25, pp. 13-25, 1997.

[20] S. Hong and H. Kim, ”An Integrated GPU Power and Performance
Model,” in ISCA’ 10, Saint-Malo, France, June 2010.

[21] R. Ge and K. W. Cameron, ”Power-Aware Speedup,” in proceedings
of the 21st IEEE International Parallel and Distributed Processing
Symposium, 2007, pp. 56-56.

[22] Y. Ding, K. Malkowski, P. Raghavan, and M. Kandemir, ”Towards
Energy Efficient Scaling of Scientific Codes,” in IEEE International
Symposium on Parallel and Distributed Processing, 2008, pp. 1 - 8

[23] N. Jiang, J. Pisharath, and A. Choudhary, ”Characterizing and im-
proving energy-delay tradeoffs in heterogeneous communication sys-
tems,” Signals, Circuits and Systems, 2003. SCS 2003. International
Symposium vol. 2, pp. 409-412, 2003.

[24] D. A. Patterson and J.L.Hennessy, Computer Architecture: A quan-
titative approach, 3rd ed. San Francisco, CA: Morgan Kaufmann
Publishers, 2003.

[25] S. S. Shende and A. D. Malony, ”The TAU Parallel Performance
System,” International Journal of High Performance Computing Ap-
plications, vol. 20, pp. 287-311, 2006.

[26] (2010). LMbench - Tools for Performance Analysis. Available:
http://www.bitmover.com/lmbench/

[27] (2010). MVAPICH2: MPI over InfiniBand, 10GigE/iWARP
and RoCE. Available: http://mvapich.cse.ohio-
state.edu/overview/mvapich2/

[28] J. Pjeivac-Grbovi, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel, and
J. J. Dongarra, ”Performance analysis of MPI collective operations,”
Cluster Computing, vol. 10, pp. 127-143, 2007.

[29] D. E. Culler, R. Karp, D. A. Patterson, A. Sahay, E. Santos,
K.Schauser, et al., ”LogP: A Practical Model of Parallel Compu-
tation,” Communications of the ACM, vol. 39, pp. 78-85, 1996.

[30] A. Alexandrov, M. F. Ionescu, K. Schauser, and C. Scheiman,
”LogGP: Incorporating Long Messages into the LogP model,” in
Proceedings of Seventh Annual Symposium on Parallel Algorithms
and Architecture, Santa Barbara, CA, 1995, pp. 95-105.

[31] T. Kielmann and H. E. Bal, ”Fast Measurement of LogP Parameters
for Message Passing Platforms.,” in Proceedings of the 15 IPDPS
2000 Workshops on Parallel and Distributed Processing, 2000.

[32] L. G. Valiant, ”A Bridging Model for Parallel Computation,” Com-
munications of the ACM, vol. 33, pp. 103-111, 1990.

[33] ”TOP500 Supercomputing Project”. Available:
http://www.top500.org

[34] The NAS Parallel Benchmarks. Available:
http://www.nas.nasa.gov/Resources/Software

[35] M. J. Quinn, Parallel Programming in C with MPI and OpenMP:
TATA McGraw-Hill 2003.

